IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4031-d279542.html
   My bibliography  Save this article

Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model

Author

Listed:
  • Theodoros Kalogiannis

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Md Sazzad Hosen

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Mohsen Akbarzadeh Sokkeh

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Shovon Goutam

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Joris Jaguemont

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Lu Jin

    (Global Energy Interconnection Research Institute Europe GmbH, 10623 Berlin, Germany)

  • Geng Qiao

    (Global Energy Interconnection Research Institute Europe GmbH, 10623 Berlin, Germany)

  • Maitane Berecibar

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Joeri Van Mierlo

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

Abstract

A lithium-ion battery cell’s electrochemical performance can be obtained through a series of standardized experiments, and the optimal operation and monitoring is performed when a model of the Li-ions is generated and adopted. With discrete-time parameter identification processes, the electrical circuit models (ECM) of the cells are derived. Over their wide range, the dual-polarization (DP) ECM is proposed to characterize two prismatic cells with different anode electrodes. In most of the studies on battery modeling, attention is paid to the accuracy comparison of the various ECMs, usually for a certain Li-ion, whereas the parameter identification methods of the ECMs are rarely compared. Hence in this work, three different approaches are performed for a certain temperature throughout the whole SoC range of the cells for two different load profiles, suitable for light- and heavy-duty electromotive applications. Analytical equations, least-square-based methods, and heuristic algorithms used for model parameterization are compared in terms of voltage accuracy, robustness, and computational time. The influence of the ECMs’ parameter variation on the voltage root mean square error (RMSE) is assessed as well with impedance spectroscopy in terms of Ohmic, internal, and total resistance comparisons. Li-ion cells are thoroughly electrically characterized and the following conclusions are drawn: (1) All methods are suitable for the modeling, giving a good agreement with the experimental data with less than 3% max voltage relative error and 30 mV RMSE in most cases. (2) Particle swarm optimization (PSO) method is the best trade-off in terms of computational time, accuracy, and robustness. (3) Genetic algorithm (GA) lack of computational time compared to PSO and LS (4) The internal resistance behavior, investigated for the PSO, showed a positive correlation to the voltage error, depending on the chemistry and loading profile.

Suggested Citation

  • Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4031-:d:279542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. Blaifi, S. & Moulahoum, S. & Colak, I. & Merrouche, W., 2016. "An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications," Applied Energy, Elsevier, vol. 169(C), pages 888-898.
    3. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    4. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    5. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    6. Mousavi G., S.M. & Nikdel, M., 2014. "Various battery models for various simulation studies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 477-485.
    7. Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.
    8. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    9. Thomas R. B. Grandjean & Andrew McGordon & Paul A. Jennings, 2017. "Structural Identifiability of Equivalent Circuit Models for Li-Ion Batteries," Energies, MDPI, vol. 10(1), pages 1-16, January.
    10. Zhu, Jiangong & Knapp, Michael & Darma, Mariyam Susana Dewi & Fang, Qiaohua & Wang, Xueyuan & Dai, Haifeng & Wei, Xuezhe & Ehrenberg, Helmut, 2019. "An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application," Applied Energy, Elsevier, vol. 248(C), pages 149-161.
    11. Farmann, Alexander & Sauer, Dirk Uwe, 2018. "Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 225(C), pages 1102-1122.
    12. Cunxue Wu & Rujian Fu & Zhongming Xu & Yang Chen, 2017. "Improved State of Charge Estimation for High Power Lithium Ion Batteries Considering Current Dependence of Internal Resistance," Energies, MDPI, vol. 10(10), pages 1-17, September.
    13. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    14. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    15. Xia, Bizhong & Chen, Chaoren & Tian, Yong & Wang, Mingwang & Sun, Wei & Xu, Zhihui, 2015. "State of charge estimation of lithium-ion batteries based on an improved parameter identification method," Energy, Elsevier, vol. 90(P2), pages 1426-1434.
    16. Rui Xiong & Hongwen He & Fengchun Sun & Kai Zhao, 2012. "Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach," Energies, MDPI, vol. 5(5), pages 1-15, May.
    17. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    18. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    19. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    20. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Wang & Xin Liu & Dongchen Qin & Yuechen Duan, 2022. "Thermal Modeling and Prediction of The Lithium-ion Battery Based on Driving Behavior," Energies, MDPI, vol. 15(23), pages 1-22, November.
    2. Karimi, Danial & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2023. "A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge," Applied Energy, Elsevier, vol. 339(C).
    3. Abraham Alem Kebede & Md Sazzad Hosen & Theodoros Kalogiannis & Henok Ayele Behabtu & Towfik Jemal & Joeri Van Mierlo & Thierry Coosemans & Maitane Berecibar, 2022. "Model Development for State-of-Power Estimation of Large-Capacity Nickel-Manganese-Cobalt Oxide-Based Lithium-Ion Cell Validated Using a Real-Life Profile," Energies, MDPI, vol. 15(18), pages 1-15, September.
    4. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    5. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
    6. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    4. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    5. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    6. Farmann, Alexander & Sauer, Dirk Uwe, 2018. "Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 225(C), pages 1102-1122.
    7. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    8. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, MDPI, vol. 11(9), pages 1-17, September.
    9. Adrian Chmielewski & Jakub Możaryn & Piotr Piórkowski & Krzysztof Bogdziński, 2018. "Comparison of NARX and Dual Polarization Models for Estimation of the VRLA Battery Charging/Discharging Dynamics in Pulse Cycle," Energies, MDPI, vol. 11(11), pages 1-28, November.
    10. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    11. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    12. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    13. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    14. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    15. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    16. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    17. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    18. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    19. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    20. Yashraj Tripathy & Andrew McGordon & Chee Tong John Low, 2018. "A New Consideration for Validating Battery Performance at Low Ambient Temperatures," Energies, MDPI, vol. 11(9), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4031-:d:279542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.