IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p563-d74338.html
   My bibliography  Save this article

New Electro-Thermal Battery Pack Model of an Electric Vehicle

Author

Listed:
  • Muhammed Alhanouti

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany)

  • Martin Gießler

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany)

  • Thomas Blank

    (Institute of Data Processing and Electronics, Eggenstein-Leopoldshafen 76344, Germany)

  • Frank Gauterin

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany)

Abstract

Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV) model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO 4 ) battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

Suggested Citation

  • Muhammed Alhanouti & Martin Gießler & Thomas Blank & Frank Gauterin, 2016. "New Electro-Thermal Battery Pack Model of an Electric Vehicle," Energies, MDPI, vol. 9(7), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:563-:d:74338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    2. Caiping Zhang & Jiuchun Jiang & Weige Zhang & Suleiman M. Sharkh, 2012. "Estimation of State of Charge of Lithium-Ion Batteries Used in HEV Using Robust Extended Kalman Filtering," Energies, MDPI, vol. 5(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anandh Ramesh Babu & Jelena Andric & Blago Minovski & Simone Sebben, 2021. "System-Level Modeling and Thermal Simulations of Large Battery Packs for Electric Trucks," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Zuchang Gao & Cheng Siong Chin & Wai Lok Woo & Junbo Jia, 2017. "Integrated Equivalent Circuit and Thermal Model for Simulation of Temperature-Dependent LiFePO 4 Battery in Actual Embedded Application," Energies, MDPI, vol. 10(1), pages 1-22, January.
    3. Cheng Siong Chin & Zuchang Gao, 2018. "State-of-Charge Estimation of Battery Pack under Varying Ambient Temperature Using an Adaptive Sequential Extreme Learning Machine," Energies, MDPI, vol. 11(4), pages 1-30, March.
    4. Tao Lei & Zhihao Min & Qinxiang Gao & Lina Song & Xingyu Zhang & Xiaobin Zhang, 2022. "The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends," Energies, MDPI, vol. 15(11), pages 1-37, June.
    5. Cheng Siong Chin & Zuchang Gao & Joel Hay King Chiew & Caizhi Zhang, 2018. "Nonlinear Temperature-Dependent State Model of Cylindrical LiFePO 4 Battery for Open-Circuit Voltage, Terminal Voltage and State-of-Charge Estimation with Extended Kalman Filter," Energies, MDPI, vol. 11(9), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaw-Kuen Shiau & Chien-Wei Ma, 2013. "Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System," Energies, MDPI, vol. 6(3), pages 1-31, March.
    2. Zhihao Yu & Ruituo Huai & Linjing Xiao, 2015. "State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization," Energies, MDPI, vol. 8(8), pages 1-20, July.
    3. Thomas R. B. Grandjean & Andrew McGordon & Paul A. Jennings, 2017. "Structural Identifiability of Equivalent Circuit Models for Li-Ion Batteries," Energies, MDPI, vol. 10(1), pages 1-16, January.
    4. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    5. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    6. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    7. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    8. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    9. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    10. Kotub Uddin & Alessandro Picarelli & Christopher Lyness & Nigel Taylor & James Marco, 2014. "An Acausal Li-Ion Battery Pack Model for Automotive Applications," Energies, MDPI, vol. 7(9), pages 1-26, August.
    11. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    12. Noshin Omar & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2013. "Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries," Energies, MDPI, vol. 6(11), pages 1-17, October.
    13. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    14. Chivon Choeung & Meng Leang Kry & Young Il Lee, 2018. "Robust Tracking Control of a Three-Phase Charger under Unbalanced Grid Conditions," Energies, MDPI, vol. 11(12), pages 1-16, December.
    15. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    16. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    17. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    18. Qi Wang & Tian Gao & Xingcan Li, 2022. "SOC Estimation of Lithium-Ion Battery Based on Equivalent Circuit Model with Variable Parameters," Energies, MDPI, vol. 15(16), pages 1-15, August.
    19. Ashikur Rahman & Xianke Lin & Chongming Wang, 2022. "Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer," Energies, MDPI, vol. 15(15), pages 1-19, August.
    20. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:563-:d:74338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.