IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v166y2016icp44-58.html
   My bibliography  Save this article

Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation

Author

Listed:
  • Wang, Shunli
  • Shang, Liping
  • Li, Zhanfeng
  • Deng, Hu
  • Li, Jianchao

Abstract

A novel concept named as state of balance (SOB) is proposed and its online dynamic estimation method is presented for the high-power lithium-ion battery (LIB) packs, based on which the online dynamic equalization adjustment is realized aiming to protect the operation safety of its power supply application. The core parameter detection method based on the specific moving average algorithm is studied because of their identical varying characteristics on the individual cells due to the manufacturing variability and other factors, affecting the performance of the high-power LIB pack. The SOB estimation method is realized with the detailed deduction, in which a dual filter consisting of the Unscented Kalman filter (UKF), equivalent circuit model (ECM) and open circuit voltage (OCV) is used in order to predict the SOB state. It is beneficial for the energy operation and the energy performance state can be evaluated online prior to the adjustment method based on the terminal voltage consistency. The energy equalization is realized that is based on the credibility reasoning together with the equalization model building process. The experiments including the core parameter detection, SOB estimation and equalization adjustment are done and the experimental results are analyzed. The experiment results show that the numerical Coulomb efficiency is bigger than 95%. The cell voltage measurement error is less than 5mV and the terminal voltage measurement error of the LIB pack is less than 1% FS. The measurement error of the battery discharge and charge maintenance current is less than 1% FS. The SOB estimation error is less than 5% in the laboratory room, the temperature of which is about 25°C. The equalization charging current is 2A and the equalization discharging current is 4.4A, which can realize the real-time energy equalization adjustment among the connected cells in the LIB pack, guaranteeing its safety in the power supply application.

Suggested Citation

  • Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
  • Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:44-58
    DOI: 10.1016/j.apenergy.2016.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916000325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles," Applied Energy, Elsevier, vol. 142(C), pages 293-302.
    2. Zhihao Yu & Ruituo Huai & Linjing Xiao, 2015. "State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization," Energies, MDPI, vol. 8(8), pages 1-20, July.
    3. Liu, Guangming & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Hua, Jianfeng, 2015. "A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications," Applied Energy, Elsevier, vol. 149(C), pages 297-314.
    4. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    5. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "Influence of connecting plate resistance upon LiFePO4 battery performance," Applied Energy, Elsevier, vol. 147(C), pages 353-360.
    6. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    7. Babu, Ajay & Ashok, S., 2015. "Improved parallel mild hybrids for urban roads," Applied Energy, Elsevier, vol. 144(C), pages 276-283.
    8. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    9. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    10. Ehteshami, Seyyed Mohsen Mousavi & Chan, S.H., 2014. "The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges," Energy Policy, Elsevier, vol. 73(C), pages 103-109.
    11. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
    12. He, HongWen & Zhang, YongZhi & Xiong, Rui & Wang, Chun, 2015. "A novel Gaussian model based battery state estimation approach: State-of-Energy," Applied Energy, Elsevier, vol. 151(C), pages 41-48.
    13. Abdel Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Mantels, Bart & Mulder, Grietus & Van den Bossche, Peter & Van Mierlo, Joeri, 2015. "Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process," Applied Energy, Elsevier, vol. 152(C), pages 143-155.
    14. Jaeshin Yi & Boram Koo & Chee Burm Shin, 2014. "Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 7(11), pages 1-16, November.
    15. Jalkanen, K. & Karppinen, J. & Skogström, L. & Laurila, T. & Nisula, M. & Vuorilehto, K., 2015. "Cycle aging of commercial NMC/graphite pouch cells at different temperatures," Applied Energy, Elsevier, vol. 154(C), pages 160-172.
    16. Ren, Guizhou & Ma, Guoqing & Cong, Ning, 2015. "Review of electrical energy storage system for vehicular applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 225-236.
    17. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    18. Tanaka, T. & Ito, S. & Muramatsu, M. & Yamada, T. & Kamiko, H. & Kakimoto, N. & Inui, Y., 2015. "Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit," Applied Energy, Elsevier, vol. 143(C), pages 200-210.
    19. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
    20. Marongiu, Andrea & Roscher, Marco & Sauer, Dirk Uwe, 2015. "Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles," Applied Energy, Elsevier, vol. 137(C), pages 899-912.
    21. Zhao, Rui & Liu, Jie & Gu, Junjie, 2015. "The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery," Applied Energy, Elsevier, vol. 139(C), pages 220-229.
    22. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    23. Ovrum, E. & Bergh, T.F., 2015. "Modelling lithium-ion battery hybrid ship crane operation," Applied Energy, Elsevier, vol. 152(C), pages 162-172.
    24. Darcovich, K. & Kenney, B. & MacNeil, D.D. & Armstrong, M.M., 2015. "Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems," Applied Energy, Elsevier, vol. 141(C), pages 32-41.
    25. Jianping Gao & Yongzhi Zhang & Hongwen He, 2015. "A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 8(8), pages 1-19, August.
    26. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai & Xie, Jing & Zhang, Xu, 2015. "A novel active equalization method for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 36-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & He, Tingting & Wei, Yiying, 2016. "Novel methods for estimating lithium-ion battery state of energy and maximum available energy," Applied Energy, Elsevier, vol. 178(C), pages 1-8.
    2. Zhang, Caiping & Jiang, Yan & Jiang, Jiuchun & Cheng, Gong & Diao, Weiping & Zhang, Weige, 2017. "Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 510-519.
    3. Yongcun Fan & Haotian Shi & Shunli Wang & Carlos Fernandez & Wen Cao & Junhan Huang, 2021. "A Novel Adaptive Function—Dual Kalman Filtering Strategy for Online Battery Model Parameters and State of Charge Co-Estimation," Energies, MDPI, vol. 14(8), pages 1-18, April.
    4. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    5. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    6. Shixin Song & Feng Xiao & Silun Peng & Chuanxue Song & Yulong Shao, 2018. "A High-Efficiency Bidirectional Active Balance for Electric Vehicle Battery Packs Based on Model Predictive Control," Energies, MDPI, vol. 11(11), pages 1-24, November.
    7. Wang, Shun-Li & Fernandez, Carlos & Zou, Chuan-Yun & Yu, Chun-Mei & Chen, Lei & Zhang, Li, 2019. "A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction," Energy, Elsevier, vol. 171(C), pages 444-455.
    8. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    9. Yu Zhang & Mingming Huang & Tiezhou Wu & Feng Ji, 2020. "Reconfigurable equilibrium circuit with additional power supply," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(1), pages 106-111.
    10. Shyang-Chyuan Fang & Bwo-Ren Ke & Chen-Yuan Chung, 2017. "Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System," Energies, MDPI, vol. 10(7), pages 1-20, June.
    11. Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
    12. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Liang, Jialin & Gan, Yunhua & Tan, Meixian & Li, Yong, 2020. "Multilayer electrochemical-thermal coupled modeling of unbalanced discharging in a serially connected lithium-ion battery module," Energy, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    4. Wang, Yujie & Chen, Zonghai & Zhang, Chenbin, 2017. "On-line remaining energy prediction: A case study in embedded battery management system," Applied Energy, Elsevier, vol. 194(C), pages 688-695.
    5. Hong Zhang & Li Zhao & Yong Chen, 2015. "A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-18, December.
    6. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    7. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    8. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    10. Ansari, Amir Babak & Esfahanian, Vahid & Torabi, Farschad, 2016. "Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition," Applied Energy, Elsevier, vol. 173(C), pages 152-167.
    11. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai & Xie, Jing & Zhang, Xu, 2015. "A novel active equalization method for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 36-42.
    12. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    13. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    14. Zhang, Xu & Wang, Yujie & Wu, Ji & Chen, Zonghai, 2018. "A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter," Applied Energy, Elsevier, vol. 216(C), pages 442-451.
    15. Burgos-Mellado, Claudio & Orchard, Marcos E. & Kazerani, Mehrdad & Cárdenas, Roberto & Sáez, Doris, 2016. "Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries," Applied Energy, Elsevier, vol. 161(C), pages 349-363.
    16. Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
    17. Zhao, Rui & Liu, Jie & Gu, Junjie, 2016. "Simulation and experimental study on lithium ion battery short circuit," Applied Energy, Elsevier, vol. 173(C), pages 29-39.
    18. Diao, Weiping & Xue, Nan & Bhattacharjee, Vikram & Jiang, Jiuchun & Karabasoglu, Orkun & Pecht, Michael, 2018. "Active battery cell equalization based on residual available energy maximization," Applied Energy, Elsevier, vol. 210(C), pages 690-698.
    19. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2017. "On-line battery state-of-charge estimation based on an integrated estimator," Applied Energy, Elsevier, vol. 185(P2), pages 2026-2032.
    20. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:166:y:2016:i:c:p:44-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.