IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4423-d599329.html
   My bibliography  Save this article

The Estimation Life Cycle of Lithium-Ion Battery Based on Deep Learning Network and Genetic Algorithm

Author

Listed:
  • Shih-Wei Tan

    (Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan
    Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan)

  • Sheng-Wei Huang

    (Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan)

  • Yi-Zeng Hsieh

    (Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan
    Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan
    Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City 202301, Taiwan)

  • Shih-Syun Lin

    (Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan)

Abstract

This study uses deep learning to model the discharge characteristic curve of the lithium-ion battery. The battery measurement instrument was used to charge and discharge the battery to establish the discharge characteristic curve. The parameter method tries to find the discharge characteristic curve and was improved by MLP (multilayer perceptron), RNN (recurrent neural network), LSTM (long short-term memory), and GRU (gated recurrent unit). The results obtained by these methods were graphs. We used genetic algorithm (GA) to obtain the parameters of the discharge characteristic curve equation.

Suggested Citation

  • Shih-Wei Tan & Sheng-Wei Huang & Yi-Zeng Hsieh & Shih-Syun Lin, 2021. "The Estimation Life Cycle of Lithium-Ion Battery Based on Deep Learning Network and Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4423-:d:599329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhihao Yu & Ruituo Huai & Linjing Xiao, 2015. "State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization," Energies, MDPI, vol. 8(8), pages 1-20, July.
    2. Yi-Zeng Hsieh & Shih-Syun Lin & Yu-Cin Luo & Yu-Lin Jeng & Shih-Wei Tan & Chao-Rong Chen & Pei-Ying Chiang, 2020. "ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim M. Safwat & Weilin Li & Xiaohua Wu, 2017. "A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation," Energies, MDPI, vol. 10(11), pages 1-16, November.
    2. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    4. Zuchang Gao & Cheng Siong Chin & Joel Hay King Chiew & Junbo Jia & Caizhi Zhang, 2017. "Design and Implementation of a Smart Lithium-Ion Battery System with Real-Time Fault Diagnosis Capability for Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-15, September.
    5. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    6. Yutong Fang & Jianzhi Deng & Fengming Zhang & Hongyan Wang, 2023. "An Intelligent Question-Answering Model over Educational Knowledge Graph for Sustainable Urban Living," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    7. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    8. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    9. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
    10. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    12. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    13. Park, Jinhyeong & Kim, Kunwoo & Park, Seongyun & Baek, Jongbok & Kim, Jonghoon, 2021. "Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications," Energy, Elsevier, vol. 232(C).
    14. Dhiman, Harsh S. & Deb, Dipankar, 2020. "Wake management based life enhancement of battery energy storage system for hybrid wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Donghoon Shin & Beomjin Yoon & Seungryeol Yoo, 2021. "Compensation Method for Estimating the State of Charge of Li-Polymer Batteries Using Multiple Long Short-Term Memory Networks Based on the Extended Kalman Filter," Energies, MDPI, vol. 14(2), pages 1-19, January.
    16. Wiesław Madej & Andrzej Wojciechowski, 2021. "Analysis of the Charging and Discharging Process of LiFePO 4 Battery Pack," Energies, MDPI, vol. 14(13), pages 1-12, July.
    17. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    18. Sahar Khaleghi & Yousef Firouz & Maitane Berecibar & Joeri Van Mierlo & Peter Van Den Bossche, 2020. "Ensemble Gradient Boosted Tree for SoH Estimation Based on Diagnostic Features," Energies, MDPI, vol. 13(5), pages 1-16, March.
    19. Jakub Matoušek & Jindřich Duník & Ondřej Straka, 2020. "Density Difference Grid Design in a Point-Mass Filter," Energies, MDPI, vol. 13(16), pages 1-17, August.
    20. Abdelhak Boudallaa & Ahmed Belkhadir & Mohammed Chennani & Driss Belkhayat & Youssef Zidani & Karim Rhofir, 2023. "Real-Time Implementation of Sensorless DTC-SVM Applied to 4WDEV Using the MRAS Estimator," Energies, MDPI, vol. 16(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4423-:d:599329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.