IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp218-227.html
   My bibliography  Save this article

State-of-charge estimation and uncertainty for lithium-ion battery strings

Author

Listed:
  • Truchot, Cyril
  • Dubarry, Matthieu
  • Liaw, Bor Yann

Abstract

The state-of-charge (SOC) estimation is of extreme importance for the reliability and safety of battery operation. How to estimate SOC and, to some degree, the SOC convention itself, is still a subject of great interest. Here a viable SOC convention valid for single cells and multi-cell strings is proposed and validated. Using a 3S1P string as an illustration in this work, the direct inference from a correct open circuit voltage versus SOC (OCV=f(SOC)) correspondence based on the proposed SOC convention is the best method for accurate SOC estimation among several possible approaches for strings. The thermodynamic aspect on this SOC convention is explained. Uncertainties in actual applications are also discussed. The understanding on this accurate SOC estimation approach shall facilitate reliable battery control and management.

Suggested Citation

  • Truchot, Cyril & Dubarry, Matthieu & Liaw, Bor Yann, 2014. "State-of-charge estimation and uncertainty for lithium-ion battery strings," Applied Energy, Elsevier, vol. 119(C), pages 218-227.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:218-227
    DOI: 10.1016/j.apenergy.2013.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913010556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Rui & Sun, Fengchun & Gong, Xianzhi & Gao, Chenchen, 2014. "A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1421-1433.
    2. Dai, Haifeng & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan & Gu, Weijun, 2012. "Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications," Applied Energy, Elsevier, vol. 95(C), pages 227-237.
    3. Tong, Shi Jie & Same, Adam & Kootstra, Mark A. & Park, Jae Wan, 2013. "Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 104(C), pages 740-750.
    4. Hu, Chao & Youn, Byeng D. & Chung, Jaesik, 2012. "A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation," Applied Energy, Elsevier, vol. 92(C), pages 694-704.
    5. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    6. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuo Li & Song Li & Haifeng Zhao & Yuan An, 2019. "Design and implementation of state-of-charge estimation based on back-propagation neural network for smart uninterruptible power system," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    2. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    3. Zhang, Caiping & Jiang, Yan & Jiang, Jiuchun & Cheng, Gong & Diao, Weiping & Zhang, Weige, 2017. "Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 510-519.
    4. Lei Pei & Cheng Yu & Tiansi Wang & Jiawei Yang & Wanlin Wang, 2024. "A Training-Free Estimation Method for the State of Charge and State of Health of Series Battery Packs under Various Load Profiles," Energies, MDPI, vol. 17(8), pages 1-20, April.
    5. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    6. Bhatti, Ghanishtha & Mohan, Harshit & Raja Singh, R., 2021. "Towards the future of smart electric vehicles: Digital twin technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    8. Thomas Bruen & James Michael Hooper & James Marco & Miguel Gama & Gael Henri Chouchelamane, 2016. "Analysis of a Battery Management System (BMS) Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 Battery Cells," Energies, MDPI, vol. 9(4), pages 1-20, April.
    9. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    10. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    11. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    12. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    13. James Marco & Neelu Kumari & W. Dhammika Widanage & Peter Jones, 2015. "A Cell-in-the-Loop Approach to Systems Modelling and Simulation of Energy Storage Systems," Energies, MDPI, vol. 8(8), pages 1-19, August.
    14. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    15. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
    16. Zhihao Yu & Ruituo Huai & Linjing Xiao, 2015. "State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization," Energies, MDPI, vol. 8(8), pages 1-20, July.
    17. Li, Zhirun & Xiong, Rui & Mu, Hao & He, Hongwen & Wang, Chun, 2017. "A novel parameter and state-of-charge determining method of lithium-ion battery for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 363-371.
    18. Xia, L. & Najafi, E. & Li, Z. & Bergveld, H.J. & Donkers, M.C.F., 2017. "A computationally efficient implementation of a full and reduced-order electrochemistry-based model for Li-ion batteries," Applied Energy, Elsevier, vol. 208(C), pages 1285-1296.
    19. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    20. Zheng, Yuejiu & Ouyang, Minggao & Li, Xiangjun & Lu, Languang & Li, Jianqiu & Zhou, Long & Zhang, Zhendong, 2016. "Recording frequency optimization for massive battery data storage in battery management systems," Applied Energy, Elsevier, vol. 183(C), pages 380-389.
    21. Ghulam E Mustafa Abro & Saiful Azrin B. M. Zulkifli & Kundan Kumar & Najib El Ouanjli & Vijanth Sagayan Asirvadam & Mahmoud A. Mossa, 2023. "Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    3. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    4. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    6. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
    7. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    8. Saw, L.H. & Ye, Y. & Tay, A.A.O., 2014. "Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles," Applied Energy, Elsevier, vol. 131(C), pages 97-107.
    9. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    10. Xue, Nansi & Du, Wenbo & Greszler, Thomas A. & Shyy, Wei & Martins, Joaquim R.R.A., 2014. "Design of a lithium-ion battery pack for PHEV using a hybrid optimization method," Applied Energy, Elsevier, vol. 115(C), pages 591-602.
    11. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    12. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    13. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    14. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    15. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    16. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    17. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    18. Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "A LiFePO4 battery pack capacity estimation approach considering in-parallel cell safety in electric vehicles," Applied Energy, Elsevier, vol. 142(C), pages 293-302.
    19. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2017. "On-line battery state-of-charge estimation based on an integrated estimator," Applied Energy, Elsevier, vol. 185(P2), pages 2026-2032.
    20. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:218-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.