IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3456-d811654.html
   My bibliography  Save this article

Harvesting Energy from Ocean: Technologies and Perspectives

Author

Listed:
  • Muhammed Zafar Ali Khan

    (Department of Mechanical Engineering, Cochin University of Science and Technology, Cochin 682022, India)

  • Haider Ali Khan

    (Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates)

  • Muhammad Aziz

    (Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan)

Abstract

The optimal utilization of renewable energies is a crucial factor toward the realization of sustainability and zero carbon in a future energy system. Tidal currents, waves, and thermal and salinity gradients in the ocean are excellent renewable energy sources. Ocean tidal, osmotic, wave, and thermal energy sources have yearly potentials that exceed the global power demand of 22,848 TWh/y. This paper extensively reviews the technologies related to energy harvesting from waves, tidal, ocean thermals, and the salinity gradient. Moreover, the socio-economic, social, and environmental aspects of the above technologies are also discussed. This paper provides a better picture of where to invest in the future energy market and highlights research gaps and recommendations for future research initiatives. It is expected that a better insight into ocean energy and a deep understanding of various potential devices can lead to a broader adoption of ocean energy. It is also clear that further research into control strategies is needed. Policy makers should provide financial support for technologies in the demonstration stage and employ road mapping to accelerate the cost and risk reductions to overcome economic hurdles. To identify traditional and online sources on the topic, the authors used electronic databases and keyword searching approaches. Among them, the International Renewable Energy Agency data were the primary database utilized to locate sources.

Suggested Citation

  • Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3456-:d:811654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martinelli, Luca & Zanuttigh, Barbara & Kofoed, Jens Peter, 2011. "Selection of design power of wave energy converters based on wave basin experiments," Renewable Energy, Elsevier, vol. 36(11), pages 3124-3132.
    2. Lanfredi, N.W. & Pousa, J.L. & Mazio, C.A. & Dragani, W.C., 1992. "Wave-power potential along the coast of the province of Buenos Aires, Argentina," Energy, Elsevier, vol. 17(11), pages 997-1006.
    3. Doyle, Simeon & Aggidis, George A., 2019. "Development of multi-oscillating water columns as wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 75-86.
    4. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    5. Asian Development Bank (ADB), 2014. "Wave Energy Conversion and Ocean Thermal Energy Conversion Potential in Developing Member Countries," ADB Reports RPT146488-3, Asian Development Bank (ADB), revised 01 Jul 2014.
    6. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    7. Stopa, Justin E. & Cheung, Kwok Fai & Chen, Yi-Leng, 2011. "Assessment of wave energy resources in Hawaii," Renewable Energy, Elsevier, vol. 36(2), pages 554-567.
    8. González Moncada, Verónica, 2020. "Impact of COVID-19 on transport and logistics connectivity in the Caribbean," Documentos de Proyectos 46507, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. Yang, Min-Hsiung & Yeh, Rong-Hua, 2014. "Analysis of optimization in an OTEC plant using organic Rankine cycle," Renewable Energy, Elsevier, vol. 68(C), pages 25-34.
    10. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    11. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    12. Reeve, D.E. & Chen, Y. & Pan, S. & Magar, V. & Simmonds, D.J. & Zacharioudaki, A., 2011. "An investigation of the impacts of climate change on wave energy generation: The Wave Hub, Cornwall, UK," Renewable Energy, Elsevier, vol. 36(9), pages 2404-2413.
    13. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    14. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    15. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
    16. Jeff Tollefson, 2014. "Power from the oceans: Blue energy," Nature, Nature, vol. 508(7496), pages 302-304, April.
    17. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Weather window analysis of Irish west coast wave data with relevance to operations & maintenance of marine renewables," Renewable Energy, Elsevier, vol. 52(C), pages 57-66.
    18. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    19. T., Micha Premkumar & Chatterjee, Dhiman, 2015. "Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy," Renewable Energy, Elsevier, vol. 77(C), pages 240-249.
    20. Walker, Jessica M. & Flack, Karen A. & Lust, Ethan E. & Schultz, Michael P. & Luznik, Luksa, 2014. "Experimental and numerical studies of blade roughness and fouling on marine current turbine performance," Renewable Energy, Elsevier, vol. 66(C), pages 257-267.
    21. Alvarez, Eduardo Alvarez & Rico-Secades, Manuel & Suárez, Daniel Fernández & Gutiérrez-Trashorras, Antonio J. & Fernández-Francos, Joaquín, 2016. "Obtaining energy from tidal microturbines: A practical example in the Nalón River," Applied Energy, Elsevier, vol. 183(C), pages 100-112.
    22. Dong-Hui Ko & Jaekwan Chung & Kwang-Soo Lee & Jin-Soon Park & Jin-Hak Yi, 2019. "Current Policy and Technology for Tidal Current Energy in Korea," Energies, MDPI, vol. 12(9), pages 1-15, May.
    23. Zhang, Dahai & Li, Wei & Lin, Yonggang, 2009. "Wave energy in China: Current status and perspectives," Renewable Energy, Elsevier, vol. 34(10), pages 2089-2092.
    24. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2016. "Tidal energy leasing and tidal phasing," Renewable Energy, Elsevier, vol. 85(C), pages 580-587.
    25. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    26. Quirapas, M.A.J.R. & Taeihagh, A., 2021. "Ocean renewable energy development in Southeast Asia: Opportunities, risks and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    27. Pacheco, A. & Ferreira, Ó., 2016. "Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario," Applied Energy, Elsevier, vol. 180(C), pages 369-385.
    28. Domenico Curto & Vincenzo Franzitta & Andrea Guercio, 2021. "Sea Wave Energy. A Review of the Current Technologies and Perspectives," Energies, MDPI, vol. 14(20), pages 1-31, October.
    29. Alvarez-Silva, O.A. & Osorio, A.F. & Winter, C., 2016. "Practical global salinity gradient energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1387-1395.
    30. Lee, Won-Yong & Kim, Sang-Soo, 1992. "The maximum power from a finite reservoir for a Lorentz cycle," Energy, Elsevier, vol. 17(3), pages 275-281.
    31. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    32. Sheng, Qihu & Jing, Fengmei & Zhang, Liang & Zhou, Nianfu & Wang, Shuqi & Zhang, Zhiyang, 2016. "Study of the hydrodynamic derivatives of vertical-axis tidal current turbines in surge motion," Renewable Energy, Elsevier, vol. 96(PA), pages 366-376.
    33. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    34. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    35. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    36. Rajagopalan, Krishnakumar & Nihous, Gérard C., 2013. "Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model," Renewable Energy, Elsevier, vol. 50(C), pages 532-540.
    37. Mueller, Markus & Wallace, Robin, 2008. "Enabling science and technology for marine renewable energy," Energy Policy, Elsevier, vol. 36(12), pages 4376-4382, December.
    38. Zanuttigh, Barbara & Angelelli, Elisa & Kofoed, Jens Peter, 2013. "Effects of mooring systems on the performance of a wave activated body energy converter," Renewable Energy, Elsevier, vol. 57(C), pages 422-431.
    39. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2009. "Wave power potential along the Atlantic coast of the southeastern USA," Renewable Energy, Elsevier, vol. 34(10), pages 2197-2205.
    40. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    41. Takeshi Yasunaga & Kevin Fontaine & Yasuyuki Ikegami, 2021. "Performance Evaluation Concept for Ocean Thermal Energy Conversion toward Standardization and Intelligent Design," Energies, MDPI, vol. 14(8), pages 1-12, April.
    42. Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    43. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Operational expenditure costs for wave energy projects and impacts on financial returns," Renewable Energy, Elsevier, vol. 50(C), pages 1119-1131.
    44. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    45. Seo, Jeonghwa & Lee, Seung-Jae & Choi, Woo-Sik & Park, Sung Taek & Rhee, Shin Hyung, 2016. "Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 97(C), pages 784-797.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Qin & Xiaoran Tang & Yu-Ting Wu & Sung-Ki Lyu, 2022. "Advancement of Tidal Current Generation Technology in Recent Years: A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
    2. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    3. Zhou Ye & Wenwei Gu & Qiyan Ji, 2022. "Study on Critical Factors Affecting Tidal Current Energy Exploitation in the Guishan Channel Area of Zhoushan," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    4. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    5. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    6. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    7. Meng Qi & Xin Dai & Bei Zhang & Junjie Li & Bangfan Liu, 2023. "The Evolution and Future Prospects of China’s Wave Energy Policy from the Perspective of Renewable Energy: Facing Problems, Governance Optimization and Effectiveness Logic," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    8. Yingjie Cui & Fei Zhang & Zhongxian Chen, 2023. "Predication of Ocean Wave Height for Ocean Wave Energy Conversion System," Energies, MDPI, vol. 16(9), pages 1-13, April.
    9. Seyed Abolfazl Mortazavizadeh & Reza Yazdanpanah & David Campos Gaona & Olimpo Anaya-Lara, 2023. "Fault Diagnosis and Condition Monitoring in Wave Energy Converters: A Review," Energies, MDPI, vol. 16(19), pages 1-16, September.
    10. Henry M. Zapata & Marcelo A. Perez & Abraham Marquez Alcaide, 2022. "Control of Cascaded Multilevel Converter for Wave Energy Applications," Energies, MDPI, vol. 16(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    2. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    3. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    4. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    5. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    6. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    7. Akpınar, Adem & Kömürcü, Murat İhsan, 2013. "Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data," Applied Energy, Elsevier, vol. 101(C), pages 502-512.
    8. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    9. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    10. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    11. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    12. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    13. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    14. Akpınar, Adem & Kömürcü, Murat İhsan, 2012. "Wave energy potential along the south-east coasts of the Black Sea," Energy, Elsevier, vol. 42(1), pages 289-302.
    15. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    16. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    17. Aydoğan, Burak & Ayat, Berna & Yüksel, Yalçın, 2013. "Black Sea wave energy atlas from 13 years hindcasted wave data," Renewable Energy, Elsevier, vol. 57(C), pages 436-447.
    18. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    19. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    20. Wu, Shuping & Liu, Chuanyu & Chen, Xinping, 2015. "Offshore wave energy resource assessment in the East China Sea," Renewable Energy, Elsevier, vol. 76(C), pages 628-636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3456-:d:811654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.