IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121002240.html
   My bibliography  Save this article

Wave energy in the UK: Status review and future perspectives

Author

Listed:
  • Jin, Siya
  • Greaves, Deborah

Abstract

This review aims at giving a picture of the progress of the UK wave energy and suggesting key steps needing to be taken for its contribution to the Net Zero greenhouse gas emissions target by 2050. It follows consultation through scoping wave energy workshops held by the Engineering and Physical Sciences Research Council (EPSRC) in August 2019 and by Supergen Offshore Renewable Energy (ORE) Hub in January 2020 and a series of structured interviews with academics, policy-makers, funding bodies and industry professionals. It is believed that the UK has excellent wave resources and advanced techniques that need to be rapidly developed to achieve the target of 22 GW of installed capacity by 2050 Greaves et al. (2020). The wave energy resources in the UK are reviewed, summarising wave energy hotspots for development and identifying openly accessible wave data. The progress and achievements of wave energy development in the UK are reviewed and described to underline the important roles that UK government and industry support have to play in securing a leading position in wave energy. The potential benefits of wave energy for the decarbonisation of UK industry (including utility scale and niche markets) to achieve Net Zero target by 2050 are presented, as well as the steps that need to be taken in the next 30 years to achieve its potential.

Suggested Citation

  • Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002240
    DOI: 10.1016/j.rser.2021.110932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emiliano Renzi & Simone Michele & Siming Zheng & Siya Jin & Deborah Greaves, 2021. "Niche Applications and Flexible Devices for Wave Energy Conversion: A Review," Energies, MDPI, vol. 14(20), pages 1-25, October.
    2. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Cheng, Yong & Song, Fukai & Xi, Chen & Collu, Maurizio & Yuan, Zhiming & Incecik, Atilla, 2023. "Feasibility of integrating a very large floating structure with multiple wave energy converters combining oscillating water columns and oscillating flaps," Energy, Elsevier, vol. 274(C).
    4. Yang, Zihao & Dong, Sheng, 2024. "A novel framework for wind energy assessment at multi-time scale based on non-stationary wind speed models: A case study in China," Renewable Energy, Elsevier, vol. 226(C).
    5. Muhammad Waqas Ayub & Ameer Hamza & George A. Aggidis & Xiandong Ma, 2023. "A Review of Power Co-Generation Technologies from Hybrid Offshore Wind and Wave Energy," Energies, MDPI, vol. 16(1), pages 1-21, January.
    6. Zhou, Binzhen & Wang, Yu & Zheng, Zhi & Jin, Peng & Ning, Dezhi, 2023. "Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater," Energy, Elsevier, vol. 282(C).
    7. Abel Arredondo-Galeana & Baran Yeter & Farhad Abad & Stephanie Ordóñez-Sánchez & Saeid Lotfian & Feargal Brennan, 2023. "Material Selection Framework for Lift-Based Wave Energy Converters Using Fuzzy TOPSIS," Energies, MDPI, vol. 16(21), pages 1-26, October.
    8. Antoine Alemany & Arturs Brekis & Augusto Montisci, 2023. "A Liquid Metal Alternate MHD Disk Generator," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    9. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Du, Xiaozhen & Li, Pengkai & Li, Zihao & Liu, Xiaotong & Wang, Wenxiu & Feng, Quanheng & Du, Lixiang & Yu, Hong & Wang, Jianjun & Xie, Xiangdong & Tang, Lihua, 2024. "Multi-pillar piezoelectric stack harvests ocean wave energy with oscillating float buoy," Energy, Elsevier, vol. 298(C).
    11. Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
    12. Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
    13. Karkaba, H. & Etienne, L. & Pelay, U. & Russeil, S. & Simo tala, J. & Boonaert, J. & Lecoeuche, S. & Bougeard, D., 2023. "Performance improvement of air cooled photo-voltaic thermal panel using economic model predictive control and vortex generators," Renewable Energy, Elsevier, vol. 218(C).
    14. Tiesheng Liu & Yanjun Liu & Shuting Huang & Gang Xue, 2022. "Shape Optimization of Oscillating Buoy Wave Energy Converter Based on the Mean Annual Power Prediction Model," Energies, MDPI, vol. 15(20), pages 1-19, October.
    15. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H., 2024. "Adaptive systematic optimization of a multi-axis ocean wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Zheng, Siming & Phillips, John Wilfrid & Hann, Martyn & Greaves, Deborah, 2023. "Mathematical modelling of a floating Clam-type wave energy converter," Renewable Energy, Elsevier, vol. 210(C), pages 280-294.
    17. Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
    18. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.