IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8042-d956919.html
   My bibliography  Save this article

Advancement of Tidal Current Generation Technology in Recent Years: A Review

Author

Listed:
  • Zhen Qin

    (School of Mechanical Engineering, Shandong University of Technology, No. 266 West Xincun Road, Zibo 255049, China
    School of Mechanical and Aerospace Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju-si 52828, Korea
    These authors contributed equally to this work.)

  • Xiaoran Tang

    (School of Mechanical Engineering, Shandong University of Technology, No. 266 West Xincun Road, Zibo 255049, China
    These authors contributed equally to this work.)

  • Yu-Ting Wu

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
    Tianrun Industrial Technology Co., Ltd., Weihai 264200, China)

  • Sung-Ki Lyu

    (School of Mechanical and Aerospace Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju-si 52828, Korea)

Abstract

Renewable energy provides an effective solution to the problem existing between energy and environmental protection. Tidal energy has great potential as a form of renewable energy. Tidal current generation (TCG) technology is the earliest renewable energy power generation technology. The advancement of science and technology has led to TCG rapidly developing since its emergence in the last century. This paper investigates the development of TCG in recent years based on the key components of TCG systems, both in terms of tidal energy harvesting research and power generation unit research. A summary of tidal energy harvesting is presented, investigating the main tidal energy harvesting units currently available. In addition, research on generators and generator control is summarized. Lastly, a comparison between horizontal and vertical axis turbines is carried out, and predictions are made about the future trends in TCG development. The purpose of this review is to summarize the research status and research methods of key components in tidal energy power generation technology and to provide insight into the research of tidal energy-related technologies.

Suggested Citation

  • Zhen Qin & Xiaoran Tang & Yu-Ting Wu & Sung-Ki Lyu, 2022. "Advancement of Tidal Current Generation Technology in Recent Years: A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8042-:d:956919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    2. Arturo Ortega & Joseph Praful Tomy & Jonathan Shek & Stephane Paboeuf & David Ingram, 2020. "An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines," Energies, MDPI, vol. 13(20), pages 1-19, October.
    3. Yeo, Eng Jet & Kennedy, David M. & O'Rourke, Fergal, 2022. "Tidal current turbine blade optimisation with improved blade element momentum theory and a non-dominated sorting genetic algorithm," Energy, Elsevier, vol. 250(C).
    4. Daniel Coles & Athanasios Angeloudis & Zoe Goss & Jon Miles, 2021. "Tidal Stream vs. Wind Energy: The Value of Cyclic Power When Combined with Short-Term Storage in Hybrid Systems," Energies, MDPI, vol. 14(4), pages 1-17, February.
    5. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    6. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    7. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    8. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    9. Murray, Robynne E. & Ordonez-Sanchez, Stephanie & Porter, Kate E. & Doman, Darrel A. & Pegg, Michael J. & Johnstone, Cameron M., 2018. "Towing tank testing of passively adaptive composite tidal turbine blades and comparison to design tool," Renewable Energy, Elsevier, vol. 116(PA), pages 202-214.
    10. Lijuan Chen & Pengfei Zheng & Wei Gao & Jishang Jiang & Jiafei Chang & Rukang Wu & Chao Ai, 2022. "Frequency Modulation Control of Hydraulic Wind Turbines Based on Ocean Used Wind Turbines and Energy Storage," Energies, MDPI, vol. 15(11), pages 1-33, June.
    11. Yong Ma & Chao Hu & Yulong Li & Rui Deng, 2018. "Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation," Energies, MDPI, vol. 11(12), pages 1-20, November.
    12. Nasteho Djama Dirieh & Jérôme Thiébot & Sylvain Guillou & Nicolas Guillou, 2022. "Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race," Energies, MDPI, vol. 15(10), pages 1-18, May.
    13. Magnus Harrold & Pablo Ouro, 2019. "Rotor Loading Characteristics of a Full-Scale Tidal Turbine," Energies, MDPI, vol. 12(6), pages 1-19, March.
    14. Laurie Jégo & Sylvain S. Guillou, 2021. "Study of a Bi-Vertical Axis Turbines Farm Using the Actuator Cylinder Method," Energies, MDPI, vol. 14(16), pages 1-23, August.
    15. Khalil Touimi & Mohamed Benbouzid & Zhe Chen, 2020. "Optimal Design of a Multibrid Permanent Magnet Generator for a Tidal Stream Turbine," Energies, MDPI, vol. 13(2), pages 1-19, January.
    16. Bao Ngoc Tran & Haechang Jeong & Jun-Ho Kim & Jin-Soon Park & Changjo Yang, 2020. "Effects of Tip Clearance Size on Energy Performance and Pressure Fluctuation of a Tidal Propeller Turbine," Energies, MDPI, vol. 13(16), pages 1-18, August.
    17. Dong-Hui Ko & Jaekwan Chung & Kwang-Soo Lee & Jin-Soon Park & Jin-Hak Yi, 2019. "Current Policy and Technology for Tidal Current Energy in Korea," Energies, MDPI, vol. 12(9), pages 1-15, May.
    18. Zhang, Aiming & Liu, Sen & Ma, Yong & Hu, Chao & Li, Zhengyu, 2022. "Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines," Energy, Elsevier, vol. 247(C).
    19. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    20. Aitor Fernández-Jiménez & Eduardo Álvarez-Álvarez & Mario López & Mateo Fouz & Iván López & Ahmed Gharib-Yosry & Rubén Claus & Rodrigo Carballo, 2021. "Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig," Energies, MDPI, vol. 14(20), pages 1-12, October.
    21. Kaufmann, Nicholas & Carolus, Thomas & Starzmann, Ralf, 2019. "Turbines for modular tidal current energy converters," Renewable Energy, Elsevier, vol. 142(C), pages 451-460.
    22. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling & Wang, Tongguang, 2020. "Effects of turbulence modelling in AD/RANS simulations of single wind & tidal turbine wakes and double wake interactions," Energy, Elsevier, vol. 208(C).
    23. Hongwei Liu & Yajing Gu & Yong-Gang Lin & Yang-Jian Li & Wei Li & Hongbin Zhou, 2020. "Improved Blade Design for Tidal Current Turbines," Energies, MDPI, vol. 13(10), pages 1-16, May.
    24. Yuquan Zhang & Jisheng Zhang & Yuan Zheng & Chunxia Yang & Wei Zang & E. Fernandez-Rodriguez, 2017. "Experimental Analysis and Evaluation of the Numerical Prediction of Wake Characteristics of Tidal Stream Turbine," Energies, MDPI, vol. 10(12), pages 1-11, December.
    25. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    26. Yongjun Dong & Yang Zhao & Wanqiang Zhu & Xueming Zhang & Jingfu Guo, 2017. "Development of a simple power controller for horizontal-axis standalone tidal current energy generation system," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 117-127.
    27. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.
    28. Stefania Zanforlin & Fulvio Buzzi & Marika Francesconi, 2019. "Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations," Energies, MDPI, vol. 12(2), pages 1-25, January.
    29. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    30. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    31. Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
    32. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.
    33. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2021. "Wake structure and mechanical energy transformation induced by a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1344-1356.
    34. Vennell, Ross & Major, Robert & Zyngfogel, Remy & Beamsley, Brett & Smeaton, Malcolm & Scheel, Max & Unwin, Heni, 2020. "Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 1890-1905.
    35. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain S. Guillou & Eric Bibeau, 2023. "Tidal Turbines," Energies, MDPI, vol. 16(7), pages 1-5, April.
    2. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    3. Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
    4. Wu, Baigong & Zhan, Mingjing & Wu, Rujian & Zhang, Xiao, 2023. "The investigation of a coaxial twin-counter-rotating turbine with variable-pitch adaptive blades," Energy, Elsevier, vol. 267(C).
    5. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    6. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    7. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    8. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
    9. Pennock, Shona & Coles, Daniel & Angeloudis, Athanasios & Bhattacharya, Saptarshi & Jeffrey, Henry, 2022. "Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits," Applied Energy, Elsevier, vol. 319(C).
    10. Leidy Tatiana Contreras & Omar Dario Lopez & Santiago Lain, 2018. "Computational Fluid Dynamics Modelling and Simulation of an Inclined Horizontal Axis Hydrokinetic Turbine," Energies, MDPI, vol. 11(11), pages 1-23, November.
    11. Jiayan Zhou & Huijuan Guo & Yuan Zheng & Zhi Zhang & Cong Yuan & Bin Liu, 2023. "Research on Wake Field Characteristics and Support Structure Interference of Horizontal Axis Tidal Stream Turbine," Energies, MDPI, vol. 16(9), pages 1-16, May.
    12. Zhang, Yuquan & Peng, Bin & Zheng, Jinhai & Zheng, Yuan & Tang, Qinghong & Liu, Zhiqiang & Xu, Junhui & Wang, Yirong & Fernandez-Rodriguez, Emmanuel, 2023. "The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition," Energy, Elsevier, vol. 283(C).
    13. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    15. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).
    16. Abed, Bouabdellah & Benzerdjeb, Abdelouahab & Benmansour, Abdeljellil & Achache, Habib & Ferhat, Rabia & Debz, Abderrahmene & Gorlov, Alaxender M., 2021. "An efficient hydrodynamic method for cross-flow turbines performance evaluation and comparison with the experiment," Renewable Energy, Elsevier, vol. 180(C), pages 993-1003.
    17. Alyona Naberezhnykh & David Ingram & Ian Ashton & Joel Culina, 2023. "How Applicable Are Turbulence Assumptions Used in the Tidal Energy Industry?," Energies, MDPI, vol. 16(4), pages 1-21, February.
    18. Zhang, Zhi & Zhang, Yuquan & Zheng, Yuan & Zhang, Jisheng & Fernandez-Rodriguez, Emmanuel & Zang, Wei & Ji, Renwei, 2023. "Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction," Energy, Elsevier, vol. 264(C).
    19. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    20. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8042-:d:956919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.