Pendulum Energy Harvesters: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
- Bin Bao & Quan Wang & Yufei Wu & Pengda Li, 2021. "Experimental Study on Hydroelectric Energy Harvester Based on a Hybrid Qiqi and Turbine Structure," Energies, MDPI, vol. 14(22), pages 1-15, November.
- Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
- Fan, Kangqi & Wang, Chenyu & Chen, Chenggen & Zhang, Yan & Wang, Peihong & Wang, Fei, 2021. "A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy," Renewable Energy, Elsevier, vol. 179(C), pages 339-350.
- Wenlin Liu & Zhao Wang & Gao Wang & Guanlin Liu & Jie Chen & Xianjie Pu & Yi Xi & Xue Wang & Hengyu Guo & Chenguo Hu & Zhong Lin Wang, 2019. "Integrated charge excitation triboelectric nanogenerator," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
- Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
- Stachowiak, Tomasz & Okada, Toshio, 2006. "A numerical analysis of chaos in the double pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 417-422.
- Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
- Pan, Jianan & Qin, Weiyang & Deng, Wangzheng & Zhang, Pengtian & Zhou, Zhiyong, 2021. "Harvesting weak vibration energy by integrating piezoelectric inverted beam and pendulum," Energy, Elsevier, vol. 227(C).
- Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
- Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
- Yang, Yiqing & Chen, Peihao & Liu, Qiang, 2021. "A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel," Applied Energy, Elsevier, vol. 302(C).
- Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
- Wu, Yipeng & Qiu, Jinhao & Zhou, Shengpeng & Ji, Hongli & Chen, Yang & Li, Sen, 2018. "A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 231(C), pages 600-614.
- Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
- Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
- Godiya Yakubu & Paweł Olejnik & Ademola B. Adisa, 2024. "Variable-Length Pendulum-Based Mechatronic Systems for Energy Harvesting: A Review of Dynamic Models," Energies, MDPI, vol. 17(14), pages 1-36, July.
- Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
- Liu, Zeyi & Rao, Xiaobo & Gao, Jianshe & Ding, Shunliang, 2023. "Non-quantum chirality and periodic islands in the driven double pendulum system," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
- Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
- Mitsuhide Sato & Takuto Takemura & Tsutomu Mizuno, 2022. "Voltage Improvement of a Swing-Magnet-Type Generator for Harvesting Bicycle Vibrations," Energies, MDPI, vol. 15(13), pages 1-14, June.
- Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
- Chen, Wei & Mo, Jiliang & Zhao, Jing & Ouyang, Huajiang, 2024. "A two-degree-of-freedom pendulum-based piezoelectric-triboelectric hybrid energy harvester with vibro-impact and bistable mechanism," Energy, Elsevier, vol. 304(C).
- Areeba Naqvi & Ahsan Ali & Wael A. Altabey & Sallam A. Kouritem, 2022. "Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review," Energies, MDPI, vol. 15(19), pages 1-35, October.
- Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Zhang, Lu & Zheng, Haoyuan & Liu, Biao & Liang, Qiwei & Li, Kai & Liu, Junkao & Chen, Weishan, 2024. "A piezoelectric energy harvester for multi-type environments," Energy, Elsevier, vol. 305(C).
- Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
- Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
- Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
More about this item
Keywords
vibration energy harvesting; single pendulum; double pendulum; electromagnetic; piezoelectric; triboelectric;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8674-:d:977325. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.