IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp532-540.html
   My bibliography  Save this article

Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model

Author

Listed:
  • Rajagopalan, Krishnakumar
  • Nihous, Gérard C.

Abstract

Global Ocean Thermal Energy Conversion (OTEC) resources are assessed for the first time with an ocean general circulation model (OGCM). Large-scale OTEC operations are represented with fluid sources and sinks of prescribed strength in global (4° × 4°) MITgcm simulations. Preliminary steady-state (time-asymptotic) results show similarities, but also significant differences with earlier one-dimensional (1-D) studies. It is confirmed that global OTEC resources are likely limited by OTEC flow effects on the stability of the vertical oceanic thermal structure. Such a limit is several times greater in a full three-dimensional context, however, with an estimated maximum annual OTEC net power production of about 30 TW. The significant OTEC flow rates corresponding to maximum net power output would result in a strong boost of the oceanic thermohaline circulation (THC). In contrast to simple 1-D analyses, the present simulations of large-scale OTEC operations also show a persistent cooling of the tropical oceanic mixed-layer. This would be balanced by a warming trend in the higher latitudes, which may practically limit OTEC deployment to smaller flow rates than at maximum net power output. An annual OTEC net power production of about 7 TW, for example, could be achieved with little effect on the oceanic temperature field.

Suggested Citation

  • Rajagopalan, Krishnakumar & Nihous, Gérard C., 2013. "Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model," Renewable Energy, Elsevier, vol. 50(C), pages 532-540.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:532-540
    DOI: 10.1016/j.renene.2012.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:532-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.