IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp529-536.html
   My bibliography  Save this article

Wave energy and hot spots in Anzali port

Author

Listed:
  • Hadadpour, Sanaz
  • Etemad-Shahidi, Amir
  • Jabbari, Ebrahim
  • Kamranzad, Bahareh

Abstract

Providing energy without unfavorable impacts on the environment is an important issue for many countries. Wave energy is one of the renewable resources with high potential and low impact on the environment, especially in coastal regions. The estimation of the wave characteristics is essential for selection of the appropriate location for wave energy exploitation. In this study, SWAN (Simulating WAves Nearshore) was used for modeling of the wave characteristics and to describe the existence and variability of wave energy in the southern part of the Caspian Sea. The model results were calibrated and verified using in-situ buoy measurements. Wave parameters were simulated and the annual wave energy was estimated in the study area. Then, high-energy spots were determined and the monthly average wave energy and seasonal variations of wave energy in the selected site were investigated. Furthermore, wave energy resource was characterized in terms of sea state parameters i.e. significant wave heights, wave periods and mean directions for selecting the most appropriate wave energy converters in the selected site. It was found that January and February, i.e. winter months, are the most energetic months and the main wave directions with the highest frequencies are northeast and northern-northeast in this site.

Suggested Citation

  • Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:529-536
    DOI: 10.1016/j.energy.2014.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saket, A. & Etemad-Shahidi, A., 2012. "Wave energy potential along the northern coasts of the Gulf of Oman, Iran," Renewable Energy, Elsevier, vol. 40(1), pages 90-97.
    2. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    3. Chen, Falin & Lu, Shyi-Min & Wang, Eric & Tseng, Kuo-Tung, 2010. "Renewable energy in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2029-2038, September.
    4. Lanfredi, N.W. & Pousa, J.L. & Mazio, C.A. & Dragani, W.C., 1992. "Wave-power potential along the coast of the province of Buenos Aires, Argentina," Energy, Elsevier, vol. 17(11), pages 997-1006.
    5. Ertekin, R.Cengiz & Yingfan, Xu, 1994. "Preliminary assessment of the wave-energy resource using observed wave and wind data," Energy, Elsevier, vol. 19(7), pages 729-738.
    6. Stopa, Justin E. & Cheung, Kwok Fai & Chen, Yi-Leng, 2011. "Assessment of wave energy resources in Hawaii," Renewable Energy, Elsevier, vol. 36(2), pages 554-567.
    7. Bernhoff, Hans & Sjöstedt, Elisabeth & Leijon, Mats, 2006. "Wave energy resources in sheltered sea areas: A case study of the Baltic Sea," Renewable Energy, Elsevier, vol. 31(13), pages 2164-2170.
    8. Folley, M. & Whittaker, T.J.T., 2009. "Analysis of the nearshore wave energy resource," Renewable Energy, Elsevier, vol. 34(7), pages 1709-1715.
    9. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2009. "Wave power potential along the Atlantic coast of the southeastern USA," Renewable Energy, Elsevier, vol. 34(10), pages 2197-2205.
    10. Abbaspour, M. & Rahimi, R., 2011. "Iran atlas of offshore renewable energies," Renewable Energy, Elsevier, vol. 36(1), pages 388-398.
    11. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    12. Lenee-Bluhm, Pukha & Paasch, Robert & Özkan-Haller, H. Tuba, 2011. "Characterizing the wave energy resource of the US Pacific Northwest," Renewable Energy, Elsevier, vol. 36(8), pages 2106-2119.
    13. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    14. Kim, Gunwoo & Jeong, Weon Mu & Lee, Kwang Soo & Jun, Kicheon & Lee, Myung Eun, 2011. "Offshore and nearshore wave energy assessment around the Korean Peninsula," Energy, Elsevier, vol. 36(3), pages 1460-1469.
    15. Leijon, Mats & Bernhoff, Hans & Berg, Marcus & Ågren, Olov, 2003. "Economical considerations of renewable electric energy production—especially development of wave energy," Renewable Energy, Elsevier, vol. 28(8), pages 1201-1209.
    16. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    17. Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
    18. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    19. Iglesias, G. & Carballo, R., 2010. "Wave energy resource in the Estaca de Bares area (Spain)," Renewable Energy, Elsevier, vol. 35(7), pages 1574-1584.
    20. Chen, Falin & Lu, Shyi-Min & Tseng, Kuo-Tung & Lee, Si-Chen & Wang, Eric, 2010. "Assessment of renewable energy reserves in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2511-2528, December.
    21. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    22. Iglesias, G. & Carballo, R., 2010. "Wave power for La Isla Bonita," Energy, Elsevier, vol. 35(12), pages 5013-5021.
    23. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    24. Akpınar, Adem & Kömürcü, Murat İhsan, 2013. "Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data," Applied Energy, Elsevier, vol. 101(C), pages 502-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2019. "Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset," Energy, Elsevier, vol. 187(C).
    2. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    3. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    4. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    5. Kharkeshi, Behrad Alizadeh & Shafaghat, Rouzbeh & Jahanian, Omid & Alamian, Rezvan & Rezanejad, Kourosh, 2022. "Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm," Energy, Elsevier, vol. 260(C).
    6. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    7. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    8. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    9. Bingölbali, Bilal & Majidi, Ajab Gul & Akpınar, Adem, 2021. "Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast," Renewable Energy, Elsevier, vol. 169(C), pages 809-819.
    10. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
    11. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.
    12. Kamranzad, Bahareh & Hadadpour, Sanaz, 2020. "A multi-criteria approach for selection of wave energy converter/location," Energy, Elsevier, vol. 204(C).
    13. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    14. Zhou, Guoqing & Huang, Jingjin & Zhang, Guangyun, 2015. "Evaluation of the wave energy conditions along the coastal waters of Beibu Gulf, China," Energy, Elsevier, vol. 85(C), pages 449-457.
    15. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    16. Khojasteh, Danial & Kamali, Reza, 2016. "Evaluation of wave energy absorption by heaving point absorbers at various hot spots in Iran seas," Energy, Elsevier, vol. 109(C), pages 629-640.
    17. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    19. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    2. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    3. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    4. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    5. Akpınar, Adem & Kömürcü, Murat İhsan, 2012. "Wave energy potential along the south-east coasts of the Black Sea," Energy, Elsevier, vol. 42(1), pages 289-302.
    6. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    7. Akpınar, Adem & Kömürcü, Murat İhsan, 2013. "Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data," Applied Energy, Elsevier, vol. 101(C), pages 502-512.
    8. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    9. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    10. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    11. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
    12. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    13. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    14. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    15. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    16. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    17. Memmola, Francesco & Contestabile, Pasquale & Falco, Pierpaolo & Brocchini, Maurizio, 2024. "Test Reference Year for wave energy studies: Generation and validation," Renewable Energy, Elsevier, vol. 224(C).
    18. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    19. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    20. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:529-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.