IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6284-d900233.html
   My bibliography  Save this article

Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories

Author

Listed:
  • Nicholas D. de Andrade

    (Electrical Engineering Department, Faculty of Engineering, Architecture and Urbanism and Geography—FAENG, Federal University of Mato Grosso do Sul—UFMS, Costa e Silva Avenue, Campo Grande 79070-900, MS, Brazil)

  • Ruben B. Godoy

    (Electrical Engineering Department, Faculty of Engineering, Architecture and Urbanism and Geography—FAENG, Federal University of Mato Grosso do Sul—UFMS, Costa e Silva Avenue, Campo Grande 79070-900, MS, Brazil)

  • Edson A. Batista

    (Electrical Engineering Department, Faculty of Engineering, Architecture and Urbanism and Geography—FAENG, Federal University of Mato Grosso do Sul—UFMS, Costa e Silva Avenue, Campo Grande 79070-900, MS, Brazil)

  • Moacyr A. G. de Brito

    (Electrical Engineering Department, Faculty of Engineering, Architecture and Urbanism and Geography—FAENG, Federal University of Mato Grosso do Sul—UFMS, Costa e Silva Avenue, Campo Grande 79070-900, MS, Brazil)

  • Rafael L. R. Soares

    (Electrical Engineering Department, Faculty of Engineering, Architecture and Urbanism and Geography—FAENG, Federal University of Mato Grosso do Sul—UFMS, Costa e Silva Avenue, Campo Grande 79070-900, MS, Brazil)

Abstract

This work compares the performance of two embedded FPGA controllers that can be used in Active Parallel Power Filters (APPF). Both controllers are validated through the FPGA-in-the-loop (FIL) technique, the algorithm’s synthesis is accomplished using the Quartus II ® platform, and the board used is from Altera ® —Cyclone IV DE2-115. The main difference between the controllers resides in the power theories used to obtain the currents for compensation. The results confirm that the FPGA is a suitable digital device for the parallel operation of multiple compensators and calculation stages, being a viable solution for the requirements imposed in the control of APPF. Furthermore, the effectiveness of the FIL technique for validating the operation of digital circuits and control systems is also confirmed. Finally, a comparison between the processing costs of each of the implemented power theories is presented to guide novel proposals.

Suggested Citation

  • Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6284-:d:900233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belqasem Aljafari & Kanagavel Rameshkumar & Vairavasundaram Indragandhi & Selvamathi Ramachandran, 2022. "A Novel Single-Phase Shunt Active Power Filter with a Cost Function Based Model Predictive Current Control Technique," Energies, MDPI, vol. 15(13), pages 1-18, June.
    2. Guanghai Bao & Sikai Ke, 2019. "Load Transfer Device for Solving a Three-Phase Unbalance Problem Under a Low-Voltage Distribution Network," Energies, MDPI, vol. 12(15), pages 1-18, July.
    3. Janailson Queiroz & Sarah Carvalho & Camila Barros & Luciano Barros & Daniel Barbosa, 2021. "Embedding an Electrical System Real-Time Simulator with Floating-Point Arithmetic in a Field Programmable Gate Array," Energies, MDPI, vol. 14(24), pages 1-16, December.
    4. Deepa Sankar & Lakshmi Syamala & Babu Chembathu Ayyappan & Mathew Kallarackal, 2021. "FPGA-Based Cost-Effective and Resource Optimized Solution of Predictive Direct Current Control for Power Converters," Energies, MDPI, vol. 14(22), pages 1-26, November.
    5. Raavi Satish & Kanchapogu Vaisakh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2021. "A Novel Three-Phase Power Flow Algorithm for the Evaluation of the Impact of Renewable Energy Sources and D-STATCOM Devices on Unbalanced Radial Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-21, September.
    6. Mohamed Abd-El-Hakeem Mohamed & Ziad M. Ali & Mahrous Ahmed & Saad F. Al-Gahtani, 2021. "Energy Saving Maximization of Balanced and Unbalanced Distribution Power Systems via Network Reconfiguration and Optimum Capacitor Allocation Using a Hybrid Metaheuristic Algorithm," Energies, MDPI, vol. 14(11), pages 1-24, May.
    7. Daniel dos Santos Mota & Elisabetta Tedeschi, 2021. "On Adaptive Moving Average Algorithms for the Application of the Conservative Power Theory in Systems with Variable Frequency," Energies, MDPI, vol. 14(4), pages 1-18, February.
    8. Marcelo Urbina & Naiara Moreira & Mikel Rodriguez & Tatiana Acosta & Jesús Lázaro & Armando Astarloa, 2018. "Secure Protocol and IP Core for Configuration of Networking Hardware IPs in the Smart Grid," Energies, MDPI, vol. 11(3), pages 1-13, February.
    9. Bernhard Grasel & José Baptista & Manfred Tragner, 2022. "Supraharmonic and Harmonic Emissions of a Bi-Directional V2G Electric Vehicle Charging Station and Their Impact to the Grid Impedance," Energies, MDPI, vol. 15(8), pages 1-27, April.
    10. Giacomo Valente & Vittoriano Muttillo & Mirco Muttillo & Gianluca Barile & Alfiero Leoni & Walter Tiberti & Luigi Pomante, 2019. "SPOF—Slave Powerlink on FPGA for Smart Sensors and Actuators Interfacing for Industry 4.0 Applications," Energies, MDPI, vol. 12(9), pages 1-13, April.
    11. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    12. Oscar Danilo Montoya & Jorge Alexander Alarcon-Villamil & Jesus C. Hernández, 2021. "Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping including the Costs of the Working Groups and Energy Losses," Energies, MDPI, vol. 14(15), pages 1-22, July.
    13. M. A. Graña-López & A. García-Diez & A. Filgueira-Vizoso & J. Chouza-Gestoso & A. Masdías-Bonome, 2019. "Study of the Sustainability of Electrical Power Systems: Analysis of the Causes that Generate Reactive Power," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    14. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Maciążek, 2022. "Active Power Filters and Power Quality," Energies, MDPI, vol. 15(22), pages 1-4, November.
    2. Oktay Karakaya & Murat Erhan Balci & Mehmet Hakan Hocaoglu, 2023. "Minimization of Voltage Harmonic Distortion of Synchronous Generators under Non-Linear Loading via Modulated Field Current," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    4. Mohamed Maher & Shady H. E. Abdel Aleem & Ahmed M. Ibrahim & Adel El-Shahat, 2022. "Novel Mathematical Design of Triple-Tuned Filters for Harmonics Distortion Mitigation," Energies, MDPI, vol. 16(1), pages 1-22, December.
    5. Krzysztof Lowczowski & Jaroslaw Gielniak & Zbigniew Nadolny & Magdalena Udzik, 2024. "Analysis of the Impact of Volt/VAR Control on Harmonics Content and Alternative Harmonic Mitigation Methods," Energies, MDPI, vol. 17(22), pages 1-26, November.
    6. Hamed Rezapour & MohamadAli Amini & Hamid Falaghi & António M. Lopes, 2023. "Integration of Stand-Alone Controlled Active Power Filters in Harmonic Power Flow of Radial Distribution Networks," Energies, MDPI, vol. 16(5), pages 1-20, March.
    7. Giovanni Artale & Nicola Panzavecchia & Valentina Cosentino & Antonio Cataliotti & Manel Ben-Romdhane & Amel Benazza-Ben Yahia & Valeria Boscaino & Noureddine Ben Othman & Vito Ditta & Michele Fiorino, 2023. "CZT-Based Harmonic Analysis in Smart Grid Using Low-Cost Electronic Measurement Boards," Energies, MDPI, vol. 16(10), pages 1-25, May.
    8. Tüysüz, Metin & Okumuş, Halil Ibrahim & Aymaz, Şeyma & Çavdar, Bora, 2024. "Real-time application of a demand-side management strategy using optimization algorithms," Applied Energy, Elsevier, vol. 368(C).
    9. Gheorghe Grigoraș & Livia Noroc & Ecaterina Chelaru & Florina Scarlatache & Bogdan-Constantin Neagu & Ovidiu Ivanov & Mihai Gavrilaș, 2021. "Coordinated Control of Single-Phase End-Users for Phase Load Balancing in Active Electric Distribution Networks," Mathematics, MDPI, vol. 9(21), pages 1-29, October.
    10. Krzysztof Dziarski & Arkadiusz Hulewicz & Grzegorz Dombek, 2021. "Thermographic Measurement of the Temperature of Reactive Power Compensation Capacitors," Energies, MDPI, vol. 14(18), pages 1-16, September.
    11. Arkadiusz Hulewicz & Krzysztof Dziarski & Łukasz Drużyński & Grzegorz Dombek, 2023. "Thermogram Based Indirect Thermographic Temperature Measurement of Reactive Power Compensation Capacitors," Energies, MDPI, vol. 16(5), pages 1-18, February.
    12. Abdallah El Ghaly & Mohamad Tarnini & Nazih Moubayed & Khaled Chahine, 2022. "A Filter-Less Time-Domain Method for Reference Signal Extraction in Shunt Active Power Filters," Energies, MDPI, vol. 15(15), pages 1-16, July.
    13. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    14. Lakshmi Syamala & Deepa Sankar & Suhara Ekkarakkudy Makkar & Bos Mathew Jos & Mathew Kallarackal, 2022. "Hysteresis Based Quasi Fixed Frequency Current Control of Single Phase Full Bridge Grid Integrated Voltage Source Inverter," Energies, MDPI, vol. 15(21), pages 1-17, October.
    15. Alex Mouapi & Nadir Hakem & Nahi Kandil, 2019. "Cantilevered Piezoelectric Micro Generator Design Issues and Application to the Mining Locomotive," Energies, MDPI, vol. 13(1), pages 1-28, December.
    16. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.
    17. G. Srinivasan & Kumar Reddy Cheepati & B. Srikanth Goud & Mohammed Alqarni & Basem Alamri & Ch. Rami Reddy, 2024. "Optimizing Techno-Economic Framework of REGs in Capacitive Supported Optimal Distribution Network," Energies, MDPI, vol. 17(23), pages 1-31, November.
    18. Minsheng Yang & Jianqi Li & Rui Du & Jianying Li & Jian Sun & Xiaofang Yuan & Jiazhu Xu & Shifu Huang, 2022. "Reactive Power Optimization Model for Distribution Networks Based on the Second-Order Cone and Interval Optimization," Energies, MDPI, vol. 15(6), pages 1-16, March.
    19. P. Abirami & C. N. Ravi, 2022. "Enhancing grid stability by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7551-7578, June.
    20. Bowen Jiang & Nimananda Sharma & Yujing Liu & Chuan Li & Xiaoliang Huang, 2022. "Real-Time FPGA/CPU-Based Simulation of a Full-Electric Vehicle Integrated with a High-Fidelity Electric Drive Model," Energies, MDPI, vol. 15(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6284-:d:900233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.