IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i6d10.1007_s10668-021-01643-2.html
   My bibliography  Save this article

Enhancing grid stability by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter

Author

Listed:
  • P. Abirami

    (Sathyabama Institute of Science and Technology)

  • C. N. Ravi

    (Vidya Jyothi Institute of Technology)

Abstract

In our everyday life we are confronting power quality issues due to primary importance of employing power electronic devices in power system network and by extensive practice of enforcing distributed generation in distribution network. Further, the key invention of electric vehicles will reduce the carbon emission to the environment. These electric vehicles need charging stations which get energy either from grid or through renewable sources. If a greater number of electric vehicles are to be charged by grid, then it gets overloaded which lead to poor power quality. Apart from this aspect presence of line inductor, capacitor and shunt capacitor equipped at consumer premises may lead to harmonic magnification in power network which ensue in voltage deformation. Because of this technological revolution harmonic is infused into the distribution network which leads to instability of grid connected system. In mere future harmonic penalty may be imposed on the end clients similar to that of maximum demand limits. So, it is very important for a consumer to avoid harmonic injection in his appliances. In existing method, passive filters are introduced to reduce the level of harmonics in the system. But it leads to resonance problem when overloaded. Thus, the main objective of this research work is to furnish the customer with quality power by diminishing the harmonic penetration throughout the power distribution using shunt active filter. To accomplish this a 10-bus radial distribution system is considered here. This system is associated with a single source and supplying nonlinear loads at bus terminus 5 and 9. The harmonic penetration is eliminated by connecting shunt active filter at the buses. The total harmonic distortion is analyzed at bus terminus 5,9 with and without active filter using MATLAB/Simulink. The simulation is carried out for both open- and closed-loop systems. A FOPID and ANN controllers are employed in closed-loop control system. The output voltage, THD, real and reactive power are measured at 5th and 9th bus. Since the distortion level increases with distance from source, the performance of controllers is examined at 9th bus. Also, the total voltage distortion in closed-loop system should comply with IEEE 519. It is well proved that as per IEEE 519 – 2014 both the controllers have the ability to manage voltage distortions within permissible limits. From the simulation results it is demonstrated that the ANN controller can eradicate harmonic injection in the radial network than FOPID controller. The THD observed in ANN controlled unit at bus 9 is 2.34, whereas it is 3.3 in FOPID controlled unit. This in turn improves the power quality of proposed network.

Suggested Citation

  • P. Abirami & C. N. Ravi, 2022. "Enhancing grid stability by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7551-7578, June.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:6:d:10.1007_s10668-021-01643-2
    DOI: 10.1007/s10668-021-01643-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01643-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01643-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    2. Amela Ajanovic & Reinhard Haas, 2018. "Electric vehicles: solution or new problem?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 7-22, December.
    3. Peng Zheng & Lingling Zhu & Wei Lu & Xin Yao, 2021. "The effects of electricity substitution in Fujian: based on microdata survey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9320-9335, June.
    4. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    5. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayo Uthman Badrudeen & Funso Kehinde Ariyo & Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2022. "A Novel Classification of the 330 kV Nigerian Power Network Using a New Voltage Stability Pointer," Energies, MDPI, vol. 15(19), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saksham Consul & Krishna Veer Singh & Hari Om Bansal & Katherine A. Kim, 2023. "Intelligent switching mechanism for power distribution in photovoltaic-fed battery electric vehicles," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8259-8278, August.
    2. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    3. Niranjan Rao Deevela & Bhim Singh & Tara C. Kandpal, 2021. "Techno-economics of solar PV array-based hybrid systems for powering telecom towers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 17003-17029, November.
    4. Mohamed Maher & Shady H. E. Abdel Aleem & Ahmed M. Ibrahim & Adel El-Shahat, 2022. "Novel Mathematical Design of Triple-Tuned Filters for Harmonics Distortion Mitigation," Energies, MDPI, vol. 16(1), pages 1-22, December.
    5. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    6. Krzysztof Lowczowski & Jaroslaw Gielniak & Zbigniew Nadolny & Magdalena Udzik, 2024. "Analysis of the Impact of Volt/VAR Control on Harmonics Content and Alternative Harmonic Mitigation Methods," Energies, MDPI, vol. 17(22), pages 1-26, November.
    7. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    8. Theo Lieven & Beatrice Hügler, 2021. "Did Electric Vehicle Sales Skyrocket Due to Increased Environmental Awareness While Total Vehicle Sales Declined during COVID-19?," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    9. Marina Siebenhofer & Amela Ajanovic & Reinhard Haas, 2021. "How Policies Affect the Dissemination of Electric Passenger Cars Worldwide," Energies, MDPI, vol. 14(8), pages 1-23, April.
    10. Tüysüz, Metin & Okumuş, Halil Ibrahim & Aymaz, Şeyma & Çavdar, Bora, 2024. "Real-time application of a demand-side management strategy using optimization algorithms," Applied Energy, Elsevier, vol. 368(C).
    11. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    12. Dongming Wu & Liukai Yu & Qianqian Zhang & Yangyang Jiao & Yuhe Wu, 2021. "Materialism, Ecological Consciousness and Purchasing Intention of Electric Vehicles: An Empirical Analysis among Chinese Consumers," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    13. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    14. Zunian Luo, 2022. "Powering Up a Slow Charging Market: How Do Government Subsidies Affect Charging Station Supply?," Papers 2210.14908, arXiv.org, revised Jan 2023.
    15. Marvello Yang & Jingzu Gao & Qing Yang & Abdullah Al Mamun & Mohammad Masukujjaman & Mohammad Enamul Hoque, 2024. "Modeling the intention to consume and willingness to pay premium price for 3D-printed food in an emerging economy," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    16. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    17. Riggs, William & Kawashima, Matt & Batstone, David, 2021. "Exploring best practice for municipal e-scooter policy in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 18-27.
    18. Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.
    19. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives," Energies, MDPI, vol. 13(21), pages 1-28, November.
    20. Sun, Ka Kit & He, Sylvia Y. & Thøgersen, John, 2022. "The purchase intention of electric vehicles in Hong Kong, a high-density Asian context, and main differences from a Nordic context," Transport Policy, Elsevier, vol. 128(C), pages 98-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:6:d:10.1007_s10668-021-01643-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.