IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924007566.html
   My bibliography  Save this article

Real-time application of a demand-side management strategy using optimization algorithms

Author

Listed:
  • Tüysüz, Metin
  • Okumuş, Halil Ibrahim
  • Aymaz, Şeyma
  • Çavdar, Bora

Abstract

Non-linear loads driven by sinusoidal sources can cause harmonic pollution in residential distribution networks. International standards (IEEE 519 and IEC61000) require harmonics in distribution networks to be kept under control, as determined by the total harmonic distortion (THD) and total demand distortion (TDD) levels, to comply with the concept of energy conservation. The implementation of demand-side management (DSM) strategies can improve system performance in the smart grid concept. This study was conducted in Trabzon, Türkiye, and involved taking real harmonic measurements of 26 different appliances in a household of four people. The active power, active energy, and harmonic values of each appliance were obtained through real measurements with a 1-second resolution. The energy management concept utilized the DPSO and DTLBO optimization methods to perform multi-objective optimization of household loads. Load scheduling using these optimization methods was performed using high-resolution data and optimization time intervals of 1 min. The load-shifting strategies obtained through various optimization methods to meet power quality requirements were investigated. Real-time measurements were taken in a house with actual appliances with a 1-second resolution for 24 h for each case study. The study presents curves, tables, and analyses of high-resolution active power, active energy, TDD, and THD data from the measurements. The load-shifting method effectively reduced both the PAR value and billing costs. The study also showed how DSM strategies worked in real-world scenarios by taking measurements with real appliances in a real house. The findings suggest are the first in the literature to show that DSM methods can mitigate the TDD value, which indicates the effect of harmonic distortion on the system according to IEEE standard limits, through real-time measurements. This contribution to the literature highlights the potential benefits of DSM methods for reducing energy costs and improving system efficiency.

Suggested Citation

  • Tüysüz, Metin & Okumuş, Halil Ibrahim & Aymaz, Şeyma & Çavdar, Bora, 2024. "Real-time application of a demand-side management strategy using optimization algorithms," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924007566
    DOI: 10.1016/j.apenergy.2024.123373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Łukasz Michalec & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Łukasz Jasiński & Vishnu Suresh, 2021. "Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Awais Manzoor & Nadeem Javaid & Ibrar Ullah & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2017. "An Intelligent Hybrid Heuristic Scheme for Smart Metering based Demand Side Management in Smart Homes," Energies, MDPI, vol. 10(9), pages 1-28, August.
    3. Sun, Yuanyuan & Xie, Xiangmin & Wang, Qingyan & Zhang, Linghan & Li, Yahui & Jin, Zongshuai, 2020. "A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas," Applied Energy, Elsevier, vol. 259(C).
    4. Zhu, Jiawei & Lin, Yishuai & Lei, Weidong & Liu, Youquan & Tao, Mengling, 2019. "Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm," Energy, Elsevier, vol. 171(C), pages 944-955.
    5. Soares, Ana & Gomes, Álvaro & Antunes, Carlos Henggeler, 2014. "Categorization of residential electricity consumption as a basis for the assessment of the impacts of demand response actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 490-503.
    6. Godiana Hagile Philipo & Josephine Nakato Kakande & Stefan Krauter, 2022. "Neural Network-Based Demand-Side Management in a Stand-Alone Solar PV-Battery Microgrid Using Load-Shifting and Peak-Clipping," Energies, MDPI, vol. 15(14), pages 1-18, July.
    7. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    8. Fatih Issi & Orhan Kaplan, 2018. "The Determination of Load Profiles and Power Consumptions of Home Appliances," Energies, MDPI, vol. 11(3), pages 1-18, March.
    9. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    10. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    11. Danish Mahmood & Nadeem Javaid & Nabil Alrajeh & Zahoor Ali Khan & Umar Qasim & Imran Ahmed & Manzoor Ilahi, 2016. "Realistic Scheduling Mechanism for Smart Homes," Energies, MDPI, vol. 9(3), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    2. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    3. Ma, Kai & Zhang, Rencai & Yang, Jie & Song, Debao, 2023. "Collaborative optimization scheduling of integrated energy system considering user dissatisfaction," Energy, Elsevier, vol. 274(C).
    4. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    5. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    6. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Madia Safdar & Ghulam Amjad Hussain & Matti Lehtonen, 2019. "Costs of Demand Response from Residential Customers’ Perspective," Energies, MDPI, vol. 12(9), pages 1-16, April.
    8. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    9. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    10. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    11. Morsali, Roozbeh & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Stojcevski, Alex & Kowalczyk, Ryszard, 2020. "A relaxed constrained decentralised demand side management system of a community-based residential microgrid with realistic appliance models," Applied Energy, Elsevier, vol. 277(C).
    12. Godiana Hagile Philipo & Josephine Nakato Kakande & Stefan Krauter, 2022. "Neural Network-Based Demand-Side Management in a Stand-Alone Solar PV-Battery Microgrid Using Load-Shifting and Peak-Clipping," Energies, MDPI, vol. 15(14), pages 1-18, July.
    13. Oktay Karakaya & Murat Erhan Balci & Mehmet Hakan Hocaoglu, 2023. "Minimization of Voltage Harmonic Distortion of Synchronous Generators under Non-Linear Loading via Modulated Field Current," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Ioannis Panapakidis & Nikolaos Asimopoulos & Athanasios Dagoumas & Georgios C. Christoforidis, 2017. "An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures," Energies, MDPI, vol. 10(9), pages 1-42, September.
    15. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    16. Celik, Berk & Roche, Robin & Suryanarayanan, Siddharth & Bouquain, David & Miraoui, Abdellatif, 2017. "Electric energy management in residential areas through coordination of multiple smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 260-275.
    17. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    18. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    19. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    20. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924007566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.