IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4524-d602070.html
   My bibliography  Save this article

Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator

Author

Listed:
  • Juliano C. L. da Silva

    (Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal 59015-000, Brazil)

  • Thales Ramos

    (Federal Institute of Education, Science and Technology of Rio Grande do Norte, Natal 59015-000, Brazil)

  • Manoel F. Medeiros Júnior

    (Federal University of Rio Grande do Norte, Natal 59078-970, Brazil)

Abstract

The power quality analysis is an essential issue in the integration of distributed energy resources to the grid. Recent standards regulate the harmonics disturbances due to the increasing penetration of intermittent energy sources interconnected with the grid employing power converters. This paper aims to analyze the power quality of an interconnected wind turbine system based on a Squirrel Cage Induction Generator (SCIG) driven by an Electromagnetic Frequency Regulator (EFR). The steady state of the EFR harmonic model is developed in the stationary frame based on the conventional induction generator modeling, which allows the study of the harmonic disturbances in the electrical and mechanical variables due to the PWM inverter of the EFR’s armature voltage. There is no electrical connection between the EFR and SCIG, and the results show that the inherent system inertia contributes to the mitigation of the harmonic content at the grid side generated by the switching. In addition to the steady-state results, the Total Rated Distortion (TRD), which considers the harmonics and interharmonics components, was computed and presented a good performance compared to the IEEE 1547 standard and real data extracted of a single Doubly Fed Induction Generator (DFIG). Finally, the harmonic performance of the proposed system was evaluated considering the impact of the equivalent Thevenin impedance of the grid at the Point of Common Coupling (PCC).

Suggested Citation

  • Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4524-:d:602070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliver Kalmbach & Christian Dirscherl & Christoph M. Hackl, 2020. "Discrete-Time DC-Link Voltage and Current Control of a Grid-Connected Inverter with LCL-Filter and Very Small DC-Link Capacitance," Energies, MDPI, vol. 13(21), pages 1-23, October.
    2. Md Ruhul Amin & Michael Negnevitsky & Evan Franklin & Kazi Saiful Alam & Seyed Behzad Naderi, 2021. "Application of Battery Energy Storage Systems for Primary Frequency Control in Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 14(5), pages 1-22, March.
    3. Rui You & Braulio Barahona & Jianyun Chai & Nicolaos A. Cutululis, 2013. "A Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability," Energies, MDPI, vol. 6(11), pages 1-17, November.
    4. Jun Yao & Qing Li & Zhe Chen & Aolin Liu, 2013. "Coordinated Control of a DFIG-Based Wind-Power Generation System with SGSC under Distorted Grid Voltage Conditions," Energies, MDPI, vol. 6(5), pages 1-21, May.
    5. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    6. Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
    7. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    8. Davide Cittanti & Fabio Mandrile & Matteo Gregorio & Radu Bojoi, 2021. "Design Space Optimization of a Three-Phase LCL Filter for Electric Vehicle Ultra-Fast Battery Charging," Energies, MDPI, vol. 14(5), pages 1-26, February.
    9. Iván Pazmiño & Sergio Martinez & Danny Ochoa, 2021. "Analysis of Control Strategies Based on Virtual Inertia for the Improvement of Frequency Stability in an Islanded Grid with Wind Generators and Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-18, January.
    10. Imran Khan & Kamran Zeb & Waqar Ud Din & Saif Ul Islam & Muhammad Ishfaq & Sadam Hussain & Hee-Je Kim, 2019. "Dynamic Modeling and Robust Controllers Design for Doubly Fed Induction Generator-Based Wind Turbines under Unbalanced Grid Fault Conditions," Energies, MDPI, vol. 12(3), pages 1-23, January.
    11. Zongjie Wang & C. Lindsay Anderson, 2021. "A Progressive Period Optimal Power Flow for Systems with High Penetration of Variable Renewable Energy Sources," Energies, MDPI, vol. 14(10), pages 1-17, May.
    12. Gang Yao & Zhichong Lu & Yide Wang & Mohamed Benbouzid & Luc Moreau, 2017. "A Virtual Synchronous Generator Based Hierarchical Control Scheme of Distributed Generation Systems," Energies, MDPI, vol. 10(12), pages 1-23, December.
    13. Héctor García & Juan Segundo & Osvaldo Rodríguez-Hernández & Rafael Campos-Amezcua & Oscar Jaramillo, 2018. "Harmonic Modelling of the Wind Turbine Induction Generator for Dynamic Analysis of Power Quality," Energies, MDPI, vol. 11(1), pages 1-19, January.
    14. Sergei Kolesnik & Alon Kuperman, 2017. "Analytical Derivation of Electrical-Side Maximum Power Line for Wind Generators," Energies, MDPI, vol. 10(10), pages 1-6, September.
    15. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel C. C. Crisóstomo & Thiago F. do Nascimento & Evandro A. D. F. Nunes & Elmer Villarreal & Ricardo Pinheiro & Andrés Salazar, 2022. "Fuzzy Control Strategy Applied to an Electromagnetic Frequency Regulator in Wind Generation Systems," Energies, MDPI, vol. 15(19), pages 1-21, September.
    2. Thiago F. do Nascimento & Evandro A. D. F. Nunes & Elmer R. L. Villarreal & Ricardo F. Pinheiro & Andrés O. Salazar, 2022. "Performance Analysis of an Electromagnetic Frequency Regulator under Parametric Variations for Wind System Applications," Energies, MDPI, vol. 15(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh Ly Duc & Petr Bilik & Radek Martinek, 2023. "Harmonics Signal Feature Extraction Techniques: A Review," Mathematics, MDPI, vol. 11(8), pages 1-36, April.
    2. Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
    3. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    4. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    5. Oktay Karakaya & Murat Erhan Balci & Mehmet Hakan Hocaoglu, 2023. "Minimization of Voltage Harmonic Distortion of Synchronous Generators under Non-Linear Loading via Modulated Field Current," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    7. K. Muthuvel & M. Vijayakumar, 2020. "Solar PV Sustained Quasi Z-Source Network-Based Unified Power Quality Conditioner for Enhancement of Power Quality," Energies, MDPI, vol. 13(10), pages 1-26, May.
    8. Mohamed Maher & Shady H. E. Abdel Aleem & Ahmed M. Ibrahim & Adel El-Shahat, 2022. "Novel Mathematical Design of Triple-Tuned Filters for Harmonics Distortion Mitigation," Energies, MDPI, vol. 16(1), pages 1-22, December.
    9. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    10. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    11. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    12. Yaçine Merrad & Mohamed Hadi Habaebi & Siti Fauziah Toha & Md. Rafiqul Islam & Teddy Surya Gunawan & Mokhtaria Mesri, 2022. "Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids," Energies, MDPI, vol. 15(12), pages 1-27, June.
    13. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    14. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    15. Bahram Shakerighadi & Esmaeil Ebrahimzadeh & Frede Blaabjerg & Claus Leth Bak, 2018. "Large-Signal Stability Modeling for the Grid-Connected VSC Based on the Lyapunov Method," Energies, MDPI, vol. 11(10), pages 1-16, September.
    16. Mohamed Mohamed Khaleel & Mohd Rafi Adzman & Samila Mat Zali, 2021. "An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM," Energies, MDPI, vol. 14(21), pages 1-26, October.
    17. Ahmed Sobhy & Ahmed G. Abo-Khalil & Dong Lei & Tareq Salameh & Adel Merabet & Malek Alkasrawi, 2022. "Coupling DFIG-Based Wind Turbines with the Grid under Voltage Imbalance Conditions," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    18. Rasool M. Imran & Shaorong Wang, 2018. "Enhanced Two-Stage Hierarchical Control for a Dual Mode WECS-Based Microgrid," Energies, MDPI, vol. 11(5), pages 1-19, May.
    19. You, Rui & Yuan, Xibo & Li, Xueqing, 2022. "A multi-rotor medium-voltage wind turbine system and its control strategy," Renewable Energy, Elsevier, vol. 186(C), pages 366-377.
    20. Gorman, Will & Barbose, Galen & Pablo Carvallo, Juan & Baik, Sunhee & Miller, Chandler & White, Philip & Praprost, Marlena, 2023. "County-level assessment of behind-the-meter solar and storage to mitigate long duration power interruptions for residential customers," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4524-:d:602070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.