IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6173-d644635.html
   My bibliography  Save this article

Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends

Author

Listed:
  • Jakub Čedík

    (Department for Quality and Dependability of Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Martin Pexa

    (Department for Quality and Dependability of Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Michal Holúbek

    (Department for Quality and Dependability of Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Jaroslav Mrázek

    (Department for Quality and Dependability of Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Hardikk Valera

    (Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India)

  • Avinash Kumar Agarwal

    (Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India)

Abstract

This contribution focuses on utilizing blended biofuels of rapeseed oil and methanol with diesel. Rapeseed is one of the most cultivated energy crops in Europe, and its purpose in the blends is to increase the bio-content in test fuels. The purpose of methanol in the blends is to increase bio-content and compensate for the higher viscosity of the rapeseed oil. As methanol is almost insoluble in diesel and rapeseed oil, iso-butanol is used as a co-solvent. The fuel blends were tested in volumetric concentrations of diesel/rapeseed oil/methanol/iso-butanol 60/30/5/5, 50/30/10/10, and 50/10/20/20. Diesel was used as a reference. The measurements were performed on a turbocharged diesel engine Zetor 1204, loaded using the power-takeoff shaft of the Zetor Forterra 8641 tractor. In this paper, the effect of the blended fuels on performance parameters, engine efficiency, production of soot particles, and regulated and unregulated emissions are monitored and analyzed. It was found that engine power decreased by up to 27%, efficiency decreased by up to 5.5% at full engine load, emissions of NO X increased by up to 21.9% at 50% engine load, and production of soot particles decreased; however, the mean size of the particles was smaller.

Suggested Citation

  • Jakub Čedík & Martin Pexa & Michal Holúbek & Jaroslav Mrázek & Hardikk Valera & Avinash Kumar Agarwal, 2021. "Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends," Energies, MDPI, vol. 14(19), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6173-:d:644635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jae-Kon Kim & Cheol-Hwan Jeon & Hyung Won Lee & Young-Kwon Park & Kyong-il Min & In-ha Hwang & Young-Min Kim, 2018. "Effect of Accelerated High Temperature on Oxidation and Polymerization of Biodiesel from Vegetable Oils," Energies, MDPI, vol. 11(12), pages 1-11, December.
    2. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    3. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    4. Altun, Şehmus & Bulut, Hüsamettin & Öner, Cengiz, 2008. "The comparison of engine performance and exhaust emission characteristics of sesame oil–diesel fuel mixture with diesel fuel in a direct injection diesel engine," Renewable Energy, Elsevier, vol. 33(8), pages 1791-1795.
    5. Liu, Youzhi & Jiao, Weizhou & Qi, Guisheng, 2011. "Preparation and properties of methanol–diesel oil emulsified fuel under high-gravity environment," Renewable Energy, Elsevier, vol. 36(5), pages 1463-1468.
    6. Appavu, Prabhu & Ramanan M, Venkata & Venu, Harish, 2019. "Quaternary blends of diesel/biodiesel/vegetable oil/pentanol as a potential alternative feedstock for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 186(C).
    7. Jiao, Weizhou & Wang, Yonghong & Li, Xiaoxia & Xu, Chengcheng & Liu, Youzhi & Zhang, Qiaoling, 2016. "Stabilization performance of methanol-diesel emulsified fuel prepared using an impinging stream-rotating packed bed," Renewable Energy, Elsevier, vol. 85(C), pages 573-579.
    8. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    9. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2014. "Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 530-536.
    10. Prasad, Shiv & Kumar, Sandeep & Yadav, Krishna Kumar & Choudhry, Jairam & Kamyab, Hesam & Bach, Quang-Vu & Sheetal, K.R. & Kannojiya, Sudha & Gupta, Neha, 2020. "Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue," Energy, Elsevier, vol. 190(C).
    11. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    12. Purushothaman, K. & Nagarajan, G., 2009. "Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil," Renewable Energy, Elsevier, vol. 34(1), pages 242-245.
    13. Belachew Tesfa & Fengshou Gu & Rakesh Mishra & Andrew Ball, 2014. "Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks," Energies, MDPI, vol. 7(1), pages 1-17, January.
    14. Taghavifar, Hadi & Nemati, Arash & Walther, Jens Honore, 2019. "Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine," Energy, Elsevier, vol. 187(C).
    15. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    16. Agnieszka Sagan & Agata Blicharz-Kania & Marek Szmigielski & Dariusz Andrejko & Paweł Sobczak & Kazimierz Zawiślak & Agnieszka Starek, 2019. "Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid," Sustainability, MDPI, vol. 11(20), pages 1-11, October.
    17. Labecki, L. & Cairns, A. & Xia, J. & Megaritis, A. & Zhao, H. & Ganippa, L.C., 2012. "Combustion and emission of rapeseed oil blends in diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 139-146.
    18. Algayyim, Sattar Jabbar Murad & Wandel, Andrew P. & Yusaf, Talal & Hamawand, Ihsan, 2017. "The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engi," Energy, Elsevier, vol. 140(P1), pages 1074-1086.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    2. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. No, Soo-Young, 2017. "Application of straight vegetable oil from triglyceride based biomass to IC engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 80-97.
    4. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    5. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    6. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    7. Venu, Harish & Veza, Ibham & Selvam, Lokesh & Appavu, Prabhu & Raju, V. Dhana & Subramani, Lingesan & Nair, Jayashri N., 2022. "Analysis of particle size diameter (PSD), mass fraction burnt (MFB) and particulate number (PN) emissions in a diesel engine powered by diesel/biodiesel/n-amyl alcohol blends," Energy, Elsevier, vol. 250(C).
    8. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    9. Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
    10. Qi, D.H. & Yang, K. & Zhang, D. & Chen, B. & Wei, Q. & Zhang, C.H., 2017. "Experimental investigation of a turbocharged CRDI diesel engine fueled with Tung oil-diesel-ethanol microemulsion fuel," Renewable Energy, Elsevier, vol. 113(C), pages 1201-1207.
    11. Huang, Haozhong & Liu, Qingsheng & Teng, Wenwen & Pan, Mingzhang & Liu, Chang & Wang, Qingxin, 2018. "Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4 mixtures," Applied Energy, Elsevier, vol. 227(C), pages 38-48.
    12. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
    13. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    14. Jiao, Weizhou & Luo, Shuai & He, Zhen & Liu, Youzhi, 2017. "Emulsified behaviors for the formation of Methanol-Diesel oil under high gravity environment," Energy, Elsevier, vol. 141(C), pages 2387-2396.
    15. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Eko Supriyanto & Jayan Sentanuhady & Ariyana Dwiputra & Ari Permana & Muhammad Akhsin Muflikhun, 2021. "The Recent Progress of Natural Sources and Manufacturing Process of Biodiesel: A Review," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    17. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    18. Eiadtrong, Suppakit & Maliwan, Kittinan & Prateepchaikul, Gumpon & Kattiyawan, Taweesak & Thephsorn, Pongsakorns & Leevijit, Theerayut, 2019. "Preparation, important fuel properties, and comparative use of un-preheated palm fatty acid distillate-diesel blends in a single cylinder diesel engine," Renewable Energy, Elsevier, vol. 134(C), pages 1089-1098.
    19. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6173-:d:644635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.