Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
- Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
- Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
- Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
- Singh, Devendra & Subramanian, K.A. & Garg, MO, 2018. "Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2947-2954.
- Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
- Liu, Shen & Colson, Gregory & Wetzstein, Michael, 2018.
"Biodiesel investment in a disruptive tax-credit policy environment,"
Energy Policy, Elsevier, vol. 123(C), pages 19-30.
- Liu, Shen & Colson, Gregory J. & Wetzstein, Michael E., 2015. "Disruptive Policy Impacts on Biodiesel Investment: The Third Leg in 3-T Policy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205582, Agricultural and Applied Economics Association.
- Ail, Snehesh Shivananda & Dasappa, S., 2016. "Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 267-286.
- Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
- Muhammad Aminul Islam & Marie Magnusson & Richard J. Brown & Godwin A. Ayoko & Md. Nurun Nabi & Kirsten Heimann, 2013. "Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles," Energies, MDPI, vol. 6(11), pages 1-27, October.
- Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
- Jerome A. Ramirez & Richard J. Brown & Thomas J. Rainey, 2015. "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels," Energies, MDPI, vol. 8(7), pages 1-30, July.
- Day, Danny & Evans, Robert J. & Lee, James W. & Reicosky, Don, 2005. "Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration," Energy, Elsevier, vol. 30(14), pages 2558-2579.
- Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
- Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
- O’Connell, Adrian & Kousoulidou, Marina & Lonza, Laura & Weindorf, Werner, 2019. "Considerations on GHG emissions and energy balances of promising aviation biofuel pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 504-515.
- Saluja, Rajesh Kumar & Kumar, Vineet & Sham, Radhey, 2016. "Stability of biodiesel – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 866-881.
- Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
- Avinash, A. & Sasikumar, P. & Murugesan, A., 2018. "Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India- an interpretive structural modeling approach," Renewable Energy, Elsevier, vol. 127(C), pages 678-684.
- Anuar, Mohd Razealy & Abdullah, Ahmad Zuhairi, 2016. "Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 208-223.
- Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
- Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
- Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
- Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
- Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Yasir, Madiha, 2017. "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1072-1088.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Savvas L. Douvartzides & Aristidis Tsiolikas & Nikolaos D. Charisiou & Manolis Souliotis & Vayos Karayannis & Nikolaos Taousanidis, 2022. "Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants," Energies, MDPI, vol. 15(15), pages 1-26, July.
- Guido Busca, 2021. "Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes," Energies, MDPI, vol. 14(13), pages 1-32, July.
- Ornella Chiavola & Fulvio Palmieri & Domenico Mario Cavallo, 2023. "On the Increase in the Renewable Fraction in Diesel Blends using Aviation Fuel in a Common Rail Engine," Energies, MDPI, vol. 16(12), pages 1-16, June.
- Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Barbosa, Ian V. & Scapim, Letícia A. & Cavalcante, Raquel M. & Young, André F., 2023. "Industrial production of green diesel in Brazil: Process simulation and economic perspectives," Renewable Energy, Elsevier, vol. 219(P2).
- Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
- Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
- Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, vol. 13(3), pages 1-29, January.
- Melad Atrash & Karen Molina & El-Or Sharoni & Gilbert Azwat & Marina Nisnevitch & Yael Albo & Faina Nakonechny, 2023. "Toward Efficient Continuous Production of Biodiesel from Brown Grease," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
- Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
- Jakub Čedík & Martin Pexa & Michal Holúbek & Jaroslav Mrázek & Hardikk Valera & Avinash Kumar Agarwal, 2021. "Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends," Energies, MDPI, vol. 14(19), pages 1-24, September.
- George Petropoulos & John Zafeiropoulos & Eleana Kordouli & Alexis Lycourghiotis & Christos Kordulis & Kyriakos Bourikas, 2023. "Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO 2 Catalysts for Renewable Diesel Production," Energies, MDPI, vol. 16(11), pages 1-15, May.
- Giancarlo Chiatti & Ornella Chiavola & Fulvio Palmieri, 2019. "Impact on Combustion and Emissions of Jet Fuel as Additive in Diesel Engine Fueled with Blends of Petrol Diesel, Renewable Diesel and Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 12(13), pages 1-14, June.
- Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
- Tirado, Alexis & Alvarez-Majmutov, Anton & Ancheyta, Jorge, 2022. "Modeling and simulation of a multi-bed industrial reactor for renewable diesel hydroprocessing," Renewable Energy, Elsevier, vol. 186(C), pages 173-182.
- Papageridis, Kyriakos N. & Charisiou, Nikolaos D. & Douvartzides, Savvas & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & AlKhoori, Sara & Polychronopoulou, Kyriaki & Goula, Maria A., 2020. "Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil," Renewable Energy, Elsevier, vol. 162(C), pages 1793-1810.
- Wu, Wei & Supankanok, Rasa & Chandra-Ambhorn, Walairat & Taipabu, Muhammad Ikhsan, 2023. "Novel CO2-negative design of palm oil-based polygeneration systems," Renewable Energy, Elsevier, vol. 203(C), pages 622-633.
- Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
- Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Yang, Zeyu & Shah, Keval & Pilon-McCullough, Charlotte & Faragher, Robert & Azmi, Pervez & Hollebone, Bruce & Fieldhouse, Ben & Yang, Chun & Dey, Diane & Lambert, Patrick & Beaulac, Vanessa, 2024. "Characterization of renewable diesel, petroleum diesel and renewable diesel/biodiesel/petroleum diesel blends," Renewable Energy, Elsevier, vol. 224(C).
- Soriano, J.A. & García-Contreras, R. & Gómez, A. & Mata, C., 2019. "Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine," Energy, Elsevier, vol. 189(C).
- Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
- Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
- Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Mei Yin Ong & Saifuddin Nomanbhay, 2022. "Optimization Study on Microwave-Assisted Hydrothermal Liquefaction of Malaysian Macroalgae Chaetomorpha sp. for Phenolic-Rich Bio-Oil Production," Energies, MDPI, vol. 15(11), pages 1-22, May.
- Farhad M. Hossain & Jana Kosinkova & Richard J. Brown & Zoran Ristovski & Ben Hankamer & Evan Stephens & Thomas J. Rainey, 2017. "Experimental Investigations of Physical and Chemical Properties for Microalgae HTL Bio-Crude Using a Large Batch Reactor," Energies, MDPI, vol. 10(4), pages 1-16, April.
- Dylan J. Cronin & Senthil Subramaniam & Casper Brady & Alan Cooper & Zhibin Yang & Joshua Heyne & Corinne Drennan & Karthikeyan K. Ramasamy & Michael R. Thorson, 2022. "Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes," Energies, MDPI, vol. 15(4), pages 1-17, February.
- Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
- Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
- Xu, Donghai & Wang, Yang & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Wu, Zhiqiang, 2019. "Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production," Renewable Energy, Elsevier, vol. 138(C), pages 1143-1151.
- Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
- Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
- Masoumi, Shima & Boahene, Philip E. & Dalai, Ajay K., 2021. "Biocrude oil and hydrochar production and characterization obtained from hydrothermal liquefaction of microalgae in methanol-water system," Energy, Elsevier, vol. 217(C).
- Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
- Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Song, Bing & Lin, Richen & Lam, Chun Ho & Wu, Hao & Tsui, To-Hung & Yu, Yun, 2021. "Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Jukka Lappalainen & David Baudouin & Ursel Hornung & Julia Schuler & Kristian Melin & Saša Bjelić & Frédéric Vogel & Jukka Konttinen & Tero Joronen, 2020. "Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin," Energies, MDPI, vol. 13(13), pages 1-45, June.
- Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
- Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
More about this item
Keywords
green diesel; biofuels; biomass feedstocks; hydro-processing of triglycerides; compression ignition (CI) engines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:809-:d:209931. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.