IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp91-100.html
   My bibliography  Save this article

Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine

Author

Listed:
  • Chen, Longfei
  • Ding, Shirun
  • Liu, Haoye
  • Lu, Yiji
  • Li, Yanfei
  • Roskilly, Anthony Paul

Abstract

Aviation Piston Engines for small general aviation aircrafts are currently facing a transition from being powered by AVGAS (aviation gasoline) to being powered by heavy fuels (diesel or kerosene). The present study compared the combustion and emission characteristics of diesel, aviation kerosene rocket propellant 3 (RP-3) and RP-3-pentanol blends in a single cylinder compression ignition (CI) engine. Heat release rate, indicated thermal efficiency, ignition delay, combustion duration, and coefficient of variation (COV) of indicated mean effective pressure were experimentally determined to reflect the engine combustion performance. The results demonstrated the feasibility of RP-3 and its mild pentanol blend (20% by volume) in modern CI engines whilst further optimisation of the injection strategy is needed if a higher ratio of pentanol (40% by volume) is used. The discrepancy in terms of combustion and emissions between diesel, RP-3 and its pentanol blends are appreciable, especially for ignition delay, combustion duration and soot emissions. Compared with diesel, RP-3 improved the indicated thermal efficiency by 1.4–12.4%, but pentanol addition decreased that by 1–6.5%. RP-3 and its pentanol blends reduced the soot emissions by nearly an order of magnitude at high engine loads compared with diesel without evident impact on nitrogen oxide (NOx) emissions. Meanwhile, Carbon monoxide (CO) and total hydrocarbon (THC) emissions of RP-3 and its pentanol blends experienced a significant increase at low loads, but CO showed a slight decrease at high loads.

Suggested Citation

  • Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:91-100
    DOI: 10.1016/j.apenergy.2017.06.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    2. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    3. Cheikh, Kezrane & Sary, Awad & Khaled, Loubar & Abdelkrim, Liazid & Mohand, Tazerout, 2016. "Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine," Applied Energy, Elsevier, vol. 161(C), pages 320-329.
    4. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    5. Liu, Haoye & Wang, Zhi & Zhang, Jun & Wang, Jianxin & Shuai, Shijin, 2017. "Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines," Applied Energy, Elsevier, vol. 185(P2), pages 1393-1402.
    6. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2014. "Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 530-536.
    7. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
    8. Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
    9. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    10. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyang Guo & Erjiang Hu & Xiaotian Li & Geyuan Yin & Zuohua Huang, 2021. "Experimental Study on Ignition Characteristics of RP-3 Jet Fuel Using Nanosecond Pulsed Plasma Discharge," Energies, MDPI, vol. 14(20), pages 1-13, October.
    2. Ornella Chiavola & Fulvio Palmieri & Domenico Mario Cavallo, 2023. "On the Increase in the Renewable Fraction in Diesel Blends using Aviation Fuel in a Common Rail Engine," Energies, MDPI, vol. 16(12), pages 1-16, June.
    3. Wang, Lei & Zhao, Zhenfeng & Yu, Chuncun & Cui, Huasheng, 2022. "Experimental study of aviation kerosene engine with PJI system," Energy, Elsevier, vol. 248(C).
    4. Zeng, Meirong & Yuan, Wenhao & Li, Wei & Zhang, Yan & Wang, Yizun, 2018. "Investigation of n-dodecane pyrolysis at various pressures and the development of a comprehensive combustion model," Energy, Elsevier, vol. 155(C), pages 152-161.
    5. Giancarlo Chiatti & Ornella Chiavola & Fulvio Palmieri, 2019. "Impact on Combustion and Emissions of Jet Fuel as Additive in Diesel Engine Fueled with Blends of Petrol Diesel, Renewable Diesel and Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 12(13), pages 1-14, June.
    6. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    7. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    8. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).
    10. Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.
    11. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    2. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    4. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    5. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    6. Pinzi, S. & López, I. & Leiva-Candia, D.E. & Redel-Macías, M.D. & Herreros, J.M. & Cubero-Atienza, A. & Dorado, M.P., 2018. "Castor oil enhanced effect on fuel ethanol-diesel fuel blend properties," Applied Energy, Elsevier, vol. 224(C), pages 409-416.
    7. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    8. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    9. Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.
    10. Herreros, J.M. & Schroer, K. & Sukjit, E. & Tsolakis, A., 2015. "Extending the environmental benefits of ethanol–diesel blends through DGE incorporation," Applied Energy, Elsevier, vol. 146(C), pages 335-343.
    11. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.
    12. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    13. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    14. Mohankumar, S. & Senthilkumar, P., 2017. "Particulate matter formation and its control methodologies for diesel engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1227-1238.
    15. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    16. Lapuerta, Magín & Hernández, Juan José & Fernández-Rodríguez, David & Cova-Bonillo, Alexis, 2017. "Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber," Energy, Elsevier, vol. 118(C), pages 613-621.
    17. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    18. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    19. Irimescu, A. & Marchitto, L. & Merola, S.S. & Tornatore, C. & Valentino, G., 2015. "Combustion process investigations in an optically accessible DISI engine fuelled with n-butanol during part load operation," Renewable Energy, Elsevier, vol. 77(C), pages 363-376.
    20. Huang, Haozhong & Liu, Qingsheng & Teng, Wenwen & Pan, Mingzhang & Liu, Chang & Wang, Qingxin, 2018. "Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4 mixtures," Applied Energy, Elsevier, vol. 227(C), pages 38-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:91-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.