IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i1p334-350d32186.html
   My bibliography  Save this article

Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks

Author

Listed:
  • Belachew Tesfa

    (Center for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Fengshou Gu

    (Center for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Rakesh Mishra

    (Center for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

  • Andrew Ball

    (Center for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK)

Abstract

Currently, alternative fuels are being investigated in detail for application in compression ignition (CI) engines resulting in exciting potential opportunities to increase energy security and reduce gas emissions. Biodiesel is one of the alternative fuels which is renewable and environmentally friendly and can be used in diesel engines with little or no modifications. The objective of this study is to investigate the effects of biodiesel types and biodiesel fraction on the emission characteristics of a CI engine. The experimental work was carried out on a four-cylinder, four-stroke, direct injection (DI) and turbocharged diesel engine by using biodiesel made from waste oil, rapeseed oil, corn oil and comparing them to normal diesel. The fuels used in the analyses are B10, B20, B50, B100 and neat diesel. The engine was operated over a range of engine speeds. Based on the measured parameters, detailed analyses were carried out on major regulated emissions such as NO x , CO, CO 2 , and THC. It has been seen that the biodiesel types (sources) do not result in any significant differences in emissions. The results also clearly indicate that the engine running with biodiesel and blends have higher NO x emission by up to 20%. However, the emissions of the CI engine running on neat biodiesel (B100) were reduced by up to 15%, 40% and 30% for CO, CO 2 and THC emissions respectively, as compared to diesel fuel at various operating conditions.

Suggested Citation

  • Belachew Tesfa & Fengshou Gu & Rakesh Mishra & Andrew Ball, 2014. "Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks," Energies, MDPI, vol. 7(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:334-350:d:32186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/1/334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/1/334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tauzia, Xavier & Maiboom, Alain & Shah, Samiur Rahman, 2010. "Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine," Energy, Elsevier, vol. 35(9), pages 3628-3639.
    2. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    5. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    6. Bhale, Purnanand Vishwanathrao & Deshpande, Nishikant V. & Thombre, Shashikant B., 2009. "Improving the low temperature properties of biodiesel fuel," Renewable Energy, Elsevier, vol. 34(3), pages 794-800.
    7. Puhan, Sukumar & Vedaraman, N. & Sankaranarayanan, G. & Ram, Boppana V. Bharat, 2005. "Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine," Renewable Energy, Elsevier, vol. 30(8), pages 1269-1278.
    8. Hammond, G.P. & Kallu, S. & McManus, M.C., 2008. "Development of biofuels for the UK automotive market," Applied Energy, Elsevier, vol. 85(6), pages 506-515, June.
    9. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    10. Bayraktar, Hakan, 2005. "Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 30(11), pages 1733-1747.
    11. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    12. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    13. Tesfa, B. & Mishra, R. & Gu, F. & Powles, N., 2010. "Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines," Renewable Energy, Elsevier, vol. 35(12), pages 2752-2760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    2. Venu, Harish & Subramani, Lingesan & Raju, V. Dhana, 2019. "Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives," Renewable Energy, Elsevier, vol. 140(C), pages 245-263.
    3. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    4. Bindra, Sunny & Kulshrestha, Saurabh, 2019. "Converting waste to energy: Production and characterization of biodiesel from Chlorella pyrenoidosa grown in a medium designed from waste," Renewable Energy, Elsevier, vol. 142(C), pages 415-425.
    5. Barouch Giechaskiel & Simone Casadei & Tommaso Rossi & Fabrizio Forloni & Andrea Di Domenico, 2021. "Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    6. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    7. Jakub Čedík & Martin Pexa & Michal Holúbek & Jaroslav Mrázek & Hardikk Valera & Avinash Kumar Agarwal, 2021. "Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends," Energies, MDPI, vol. 14(19), pages 1-24, September.
    8. Meshack Hawi & Ahmed Elwardany & Mohamed Ismail & Mahmoud Ahmed, 2019. "Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles," Energies, MDPI, vol. 12(5), pages 1-18, February.
    9. Armando Pérez & David Mateos & Conrado García & Camilo Caraveo & Gisela Montero & Marcos Coronado & Benjamín Valdez, 2020. "Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel," Energies, MDPI, vol. 13(14), pages 1-14, July.
    10. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    11. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Gires, Ezanee & Yu, Jianglong & Lucas, John & Yusaf, Talal, 2021. "Performance and exhaust emissions rate of small-scale turbojet engine running on dual biodiesel blends using Gasturb," Energy, Elsevier, vol. 232(C).
    12. Nabi, M.N. & Rasul, M.G. & Anwar, M. & Mullins, B.J., 2019. "Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels," Renewable Energy, Elsevier, vol. 140(C), pages 647-657.
    13. Nasha Wei & Zhi Chen & Yuandong Xu & Fengshou Gu & Andrew Ball, 2021. "The Investigation into the Tribological Impact of Alternative Fuels on Engines Based on Acoustic Emission," Energies, MDPI, vol. 14(8), pages 1-20, April.
    14. Piotr Bielaczyc & Wojciech Honkisz & Joseph Woodburn & Andrzej Szczotka & Fabrizio Forloni & Dominique Lesueur & Barouch Giechaskiel, 2021. "Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories," Energies, MDPI, vol. 14(23), pages 1-16, December.
    15. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    2. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    3. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    4. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    5. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    6. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    7. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    8. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    9. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    10. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    11. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    12. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    13. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    14. Eryilmaz, Tanzer & Yesilyurt, Murat Kadir, 2016. "Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel," Renewable Energy, Elsevier, vol. 95(C), pages 233-247.
    15. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    16. Belachew Cekene Tesfa & Rakesh Mishra & Aliyu M. Aliyu, 2021. "Effect of Biodiesel Blends on the Transient Performance of Compression Ignition Engines," Energies, MDPI, vol. 14(17), pages 1-21, August.
    17. Kodate, Shankar Vitthal & Satyanarayana Raju, Pragada & Yadav, Ajay Kumar & Kumar, G.N., 2021. "Investigation of preheated Dhupa seed oil biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine," Energy, Elsevier, vol. 231(C).
    18. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    20. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:334-350:d:32186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.