IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6257-d452563.html
   My bibliography  Save this article

Hybrid Battery Thermal Management System in Electrical Vehicles: A Review

Author

Listed:
  • Chunyu Zhao

    (School of Energy and Power, Xi’an JiaoTong University, Xi’an 710049, China)

  • Beile Zhang

    (School of Energy and Power, Xi’an JiaoTong University, Xi’an 710049, China)

  • Yuanming Zheng

    (School of Energy and Power, Xi’an JiaoTong University, Xi’an 710049, China)

  • Shunyuan Huang

    (School of Energy and Power, Xi’an JiaoTong University, Xi’an 710049, China)

  • Tongtong Yan

    (School of Energy and Power, Xi’an JiaoTong University, Xi’an 710049, China)

  • Xiufang Liu

    (School of Energy and Power, Xi’an JiaoTong University, Xi’an 710049, China)

Abstract

The Li-ion battery is of paramount importance to electric vehicles (EVs). Propelled by the rapid growth of the EV industry, the performance of the battery is continuously improving. However, Li-ion batteries are susceptible to the working temperature and only obtain the optimal performance within an acceptable temperature range. Therefore, a battery thermal management system (BTMS) is required to ensure EVs’ safe operation. There are various basic methods for BTMS, including forced-air cooling, liquid cooling, phase change material (PCM), heat pipe (HP), thermoelectric cooling (TEC), etc. Every method has its unique application condition and characteristic. Furthermore, based on basic BTMS, more hybrid cooling methods adopting different basic methods are being designed to meet EVs’ requirements. In this work, the hybrid BTMS, as a more reliable and environmentally friendly method for the EVs, will be compared with basic BTMS to reveal its advantages and potential. By analyzing its cost, efficiency and other aspects, the evaluation criterion and design suggestions are put forward to guide the future development of BTMS.

Suggested Citation

  • Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6257-:d:452563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
    2. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    3. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    4. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    5. Safdari, Mojtaba & Ahmadi, Rouhollah & Sadeghzadeh, Sadegh, 2020. "Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management," Energy, Elsevier, vol. 193(C).
    6. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    7. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    8. Rao, Zhonghao & Wang, Qingchao & Huang, Congliang, 2016. "Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system," Applied Energy, Elsevier, vol. 164(C), pages 659-669.
    9. Menale, Carla & D'Annibale, Francesco & Mazzarotta, Barbara & Bubbico, Roberto, 2019. "Thermal management of lithium-ion batteries: An experimental investigation," Energy, Elsevier, vol. 182(C), pages 57-71.
    10. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    11. Zhang, Sijie & Zhao, Rui & Liu, Jie & Gu, Junjie, 2014. "Investigation on a hydrogel based passive thermal management system for lithium ion batteries," Energy, Elsevier, vol. 68(C), pages 854-861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moeed Rabiei & Ayat Gharehghani & Soheil Saeedipour & Amin Mahmoudzadeh Andwari & Juho Könnö, 2023. "Proposing a Hybrid BTMS Using a Novel Structure of a Microchannel Cold Plate and PCM," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    3. Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2021. "Lessons from the Electric Vehicle Crashworthiness Leading to Battery Fire," Energies, MDPI, vol. 14(16), pages 1-21, August.
    4. Arjan F. Kirkels & Jeroen Bleker & Henny A. Romijn, 2022. "Ready for the Road? A Socio-Technical Investigation of Fire Safety Improvement Options for Lithium-Ion Traction Batteries," Energies, MDPI, vol. 15(9), pages 1-22, May.
    5. Dmitry V. Pelegov & Jean-Jacques Chanaron, 2022. "Electric Car Market Analysis Using Open Data: Sales, Volatility Assessment, and Forecasting," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    6. Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Hazem Youssef & Hakan Serhad Soyhan, 2023. "Battery Thermal Management: An Application to Petrol Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    7. Mohammad Joula & Savas Dilibal & Gonca Mafratoglu & Josiah Owusu Danquah & Mohammad Alipour, 2022. "Hybrid Battery Thermal Management System with NiTi SMA and Phase Change Material (PCM) for Li-ion Batteries," Energies, MDPI, vol. 15(12), pages 1-16, June.
    8. Sørensen, Åse Lekang & Ludvigsen, Bjørn & Andresen, Inger, 2023. "Grid-connected cabin preheating of Electric Vehicles in cold climates – A non-flexible share of the EV energy use," Applied Energy, Elsevier, vol. 341(C).
    9. Sihui Dong & Jinxiao Lv & Kang Wang & Wanjing Li & Yining Tian, 2022. "Design and Optimization for a New Locomotive Power Battery Box," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    10. Muhsin Kılıç & Sevgül Gamsız & Zehra Nihan Alınca, 2023. "Comparative Evaluation and Multi-Objective Optimization of Cold Plate Designed for the Lithium-Ion Battery Pack of an Electrical Pickup by Using Taguchi–Grey Relational Analysis," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    11. Lena Spitthoff & Paul R. Shearing & Odne Stokke Burheim, 2021. "Temperature, Ageing and Thermal Management of Lithium-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-30, February.
    12. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    13. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    5. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    6. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    8. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    9. Sheng, Lei & Zhang, Hengyun & Su, Lin & Zhang, Zhendong & Zhang, Hua & Li, Kang & Fang, Yidong & Ye, Wen, 2021. "Effect analysis on thermal profile management of a cylindrical lithium-ion battery utilizing a cellular liquid cooling jacket," Energy, Elsevier, vol. 220(C).
    10. Kaur, Inderjot & Singh, Prashant, 2023. "Progress in minichannel-based thermal management of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Mortazavi, Bohayra & Yang, Hongliu & Mohebbi, Farzad & Cuniberti, Gianaurelio & Rabczuk, Timon, 2017. "Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation," Applied Energy, Elsevier, vol. 202(C), pages 323-334.
    12. Liang, Lin & Zhao, Yaohua & Diao, Yanhua & Ren, Ruyang & Jing, Heran, 2021. "Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles," Energy, Elsevier, vol. 235(C).
    13. Liu, Yuanzhi & Zhang, Jie, 2019. "Design a J-type air-based battery thermal management system through surrogate-based optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Chuan-Wei Zhang & Shang-Rui Chen & Huai-Bin Gao & Ke-Jun Xu & Zhan Xia & Shuai-Tian Li, 2019. "Study of Thermal Management System Using Composite Phase Change Materials and Thermoelectric Cooling Sheet for Power Battery Pack," Energies, MDPI, vol. 12(10), pages 1-14, May.
    15. Wang, Huaibin & Wang, Shuyu & Feng, Xuning & Zhang, Xuan & Dai, Kangwei & Sheng, Jun & Zhao, Zhenyang & Du, Zhiming & Zhang, Zelin & Shen, Kai & Xu, Chengshan & Wang, Qinzheng & Sun, Xiaoyu & Li, Yanl, 2021. "An experimental study on the thermal characteristics of the Cell-To-Pack system," Energy, Elsevier, vol. 227(C).
    16. Yubai Li & Zhifu Zhou & Wei-Tao Wu, 2020. "Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery," Energies, MDPI, vol. 13(4), pages 1-16, February.
    17. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    18. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    20. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6257-:d:452563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.