IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223004954.html
   My bibliography  Save this article

Review of heat pump integrated energy systems for future zero-emission vehicles

Author

Listed:
  • Zhang, Nan
  • Lu, Yiji
  • Ouderji, Zahra Hajabdollahi
  • Yu, Zhibin

Abstract

Climate action is essential if global warming is to be limited to 1.5 °C and, and consequently, the transportation sector aims to phase out fossil fuel vehicles, to ensure that carbon net-zero can be achieved by 2050. It is expected that batteries or hydrogen fuel cells will most likely be the main driver of future zero-emission vehicles in order to achieve the zero-emission target for transport. One of the key research challenges in fully electric vehicles is the space heating/cooling in the cabin, which consumes a huge amount of electricity through conventional methods. Moreover, batteries and fuel cells both require properly designed thermal management systems to ensure the operational function of the systems. This work aims to provide a comprehensive summary of various advanced thermal management strategies/systems for future zero-emission electric vehicles. First, the latest battery thermal management systems are described, in terms of different operating conditions. Second, novel heat pump systems designed for Electric vehicles (EV) to achieve sufficient cabin space heating/cooling production and to address existing cabin issues are discussed. Finally, the heat pump-assisted integrated thermal management system, including cabin and battery thermal management, is reviewed regarding performance and intelligent control logic. This literature review not only addresses the research gaps but also identifies potential solutions to tackle the heating/cooling of cabin space for future zero-emission vehicles.

Suggested Citation

  • Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223004954
    DOI: 10.1016/j.energy.2023.127101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    2. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    3. Shahbaz, Muhammad & Nasir, Muhammad Ali & Hille, Erik & Mahalik, Mantu Kumar, 2020. "UK's net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017)," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    4. James Jeffs & Andrew McGordon & Alessandro Picarelli & Simon Robinson & Yashraj Tripathy & Widanalage Dhammika Widanage, 2018. "Complex Heat Pump Operational Mode Identification and Comparison for Use in Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-24, August.
    5. Lee, Sangwook & Chung, Yoong & Kim, Sunjin & Jeong, Yeonwoo & Kim, Min Soo, 2023. "Predictive optimization method for the waste heat recovery strategy in an electric vehicle heat pump system," Applied Energy, Elsevier, vol. 333(C).
    6. Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.
    7. Xu, Jiamin & Zhang, Caizhi & Fan, Ruijia & Bao, Huanhuan & Wang, Yi & Huang, Shulong & Chin, Cheng Siong & Li, Congxin, 2020. "Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle," Energy, Elsevier, vol. 199(C).
    8. Han, Xinxin & Zou, Huiming & Wu, Jiang & Tian, Changqing & Tang, Mingsheng & Huang, Guangyan, 2020. "Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus," Renewable Energy, Elsevier, vol. 152(C), pages 835-848.
    9. Ding, Peng & Wang, Zhong & Wang, Ying & Li, Kaiyun, 2020. "A distributed multiple-heat source staged heating method in an electric vehicle," Renewable Energy, Elsevier, vol. 150(C), pages 1010-1018.
    10. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
    11. Dominik Dvorak & Daniele Basciotti & Imre Gellai, 2020. "Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-18, October.
    12. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    13. Qi, Zhaogang, 2014. "Advances on air conditioning and heat pump system in electric vehicles – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 754-764.
    14. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    15. Xingwang Tang & Qin Guo & Ming Li & Mingzhe Jiang, 2020. "Heating Performance Characteristics of an Electric Vehicle Heat Pump Air Conditioning System Based on Exergy Analysis," Energies, MDPI, vol. 13(11), pages 1-14, June.
    16. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    17. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    18. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    19. Mei, Zhenyuan & Hwang, Yunho & Kim, Jaeyeon, 2022. "Thermodynamic analysis and LCCP evaluation of kangaroo heat pump cycle for electric vehicles," Energy, Elsevier, vol. 259(C).
    20. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    21. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    22. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Lulin & Lu, Lidi & Shen, Xuelian & Chen, Jinhua & Pan, Yang & Wang, Yuchen & Luo, Qing, 2023. "Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for Co-generation of heating, cooling and biogas," Energy, Elsevier, vol. 282(C).
    2. Yu, Mingzhe & Yang, Fubin & Zhang, Hongguang & Yan, Yinlian & Ping, Xu & Pan, Yachao & Xing, Chengda & Yang, Anren, 2024. "Thermoeconomic performance of supercritical carbon dioxide Brayton cycle systems for CNG engine waste heat recovery," Energy, Elsevier, vol. 289(C).
    3. Wu, Jiafeng & Li, Lin & Yin, Zichao & Li, Zhe & Wang, Tong & Tan, Yunfeng & Tan, Dapeng, 2024. "Mass transfer mechanism of multiphase shear flows and interphase optimization solving method," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    2. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    3. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    4. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    5. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    6. Sørensen, Åse Lekang & Ludvigsen, Bjørn & Andresen, Inger, 2023. "Grid-connected cabin preheating of Electric Vehicles in cold climates – A non-flexible share of the EV energy use," Applied Energy, Elsevier, vol. 341(C).
    7. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    9. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    10. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    12. Jia, Fan & Yin, Xiang & Cao, Feng & Fang, Jianmin & Wang, Anci & Wang, Xixi & Yang, Lichen, 2024. "A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions," Energy, Elsevier, vol. 286(C).
    13. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    14. Kim, Dong-Min & Chin, Jun-Woo & Kim, Jae-Hyun & Lim, Myung-Seop, 2023. "Analytical temperature estimation process of the air supply system of the proton exchange membrane fuel cell stack in fuel cell electric vehicles," Energy, Elsevier, vol. 283(C).
    15. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    16. Kang Li & Jun Yu & Mingkang Liu & Dan Xu & Lin Su & Yidong Fang, 2020. "A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles," Energies, MDPI, vol. 13(3), pages 1-18, February.
    17. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    18. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    19. Gian Luca Patrone & Elena Paffumi & Marcos Otura & Mario Centurelli & Christian Ferrarese & Steffen Jahn & Andreas Brenner & Bernd Thieringer & Daniel Braun & Thomas Hoffmann, 2022. "Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle," Energies, MDPI, vol. 15(4), pages 1-21, February.
    20. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223004954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.