IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3323-d807584.html
   My bibliography  Save this article

Ready for the Road? A Socio-Technical Investigation of Fire Safety Improvement Options for Lithium-Ion Traction Batteries

Author

Listed:
  • Arjan F. Kirkels

    (School of Innovation Sciences, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Jeroen Bleker

    (ELEO Technologies, Automotive Campus 30, 5708 JZ Helmond, The Netherlands)

  • Henny A. Romijn

    (School of Innovation Sciences, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

Abstract

Battery technology is crucial in the transition towards electric mobility. Lithium-ion batteries are conquering the market but are facing fire safety risks that might threaten further applications. In this study, we address the problem and potential solutions for traction batteries in the European Union area. We do so by taking a unique socio-technical system perspective. Therefore, a novel, mixed-method approach is applied, combining literature review; stakeholder interviews; Failure Mode, Mechanisms, and Event Analysis (FMMEA); and rapid prototyping. Our findings confirm that fire safety is an upcoming concern. Still, most stakeholders lack a full understanding of the problem. Improving safety is a shared responsibility among supply chain and societal stakeholders. For automotive applications, voluntary standard-setting on safety risks is an appropriate tool to improve fire safety, whereas for niche applications, a top-down approach setting regulations seems more suited. For both groups, the adaptation of battery pack designs to prevent thermal runaway propagation is shown to be promising from a technological, practical, and organizational perspective. The chosen mixed-method approach allowed for a holistic analysis of the problems and potential solutions. As such, it can serve as an empowerment strategy for stakeholders in the field, stimulating further discussion, agenda building, and action.

Suggested Citation

  • Arjan F. Kirkels & Jeroen Bleker & Henny A. Romijn, 2022. "Ready for the Road? A Socio-Technical Investigation of Fire Safety Improvement Options for Lithium-Ion Traction Batteries," Energies, MDPI, vol. 15(9), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3323-:d:807584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Alan G. Armstrong, 1981. "Consumer safety and the regulation of industry," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 2(2), pages 67-73, June.
    3. Arjan Kirkels & Vince Evers & Gerrit Muller, 2021. "Systems Engineering for the Energy Transition: Potential Contributions and Limitations," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    4. Richard Owen & Phil Macnaghten & Jack Stilgoe, 2012. "Responsible research and innovation: From science in society to science for society, with society," Science and Public Policy, Oxford University Press, vol. 39(6), pages 751-760, December.
    5. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    6. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    7. Stéphanie Looser & Walter Wehrmeyer, 2015. "Stakeholder mapping of CSR in Switzerland," Social Responsibility Journal, Emerald Group Publishing Limited, vol. 11(4), pages 780-830, October.
    8. Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.
    9. Nicholas A. Ashford & Ralph P. Hall, 2011. "The Importance of Regulation-Induced Innovation for Sustainable Development," Sustainability, MDPI, vol. 3(1), pages 1-23, January.
    10. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    11. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. John M Bryson, 2004. "What to do when Stakeholders matter," Public Management Review, Taylor & Francis Journals, vol. 6(1), pages 21-53, March.
    13. Richard J. Arnould & Henry Grabowski, 1981. "Auto Safety Regulation: An Analysis of Market Failure," Bell Journal of Economics, The RAND Corporation, vol. 12(1), pages 27-48, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mattia Gianvincenzi & Marco Marconi & Enrico Maria Mosconi & Claudio Favi & Francesco Tola, 2024. "Systematic Review of Battery Life Cycle Management: A Framework for European Regulation Compliance," Sustainability, MDPI, vol. 16(22), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayaraj, Nikhil & Klarin, Anton & Ananthram, Subramaniam, 2024. "The transition towards solar energy storage: a multi-level perspective," Energy Policy, Elsevier, vol. 192(C).
    2. van Geenhuizen, Marina & Ye, Qing, 2014. "Responsible innovators: open networks on the way to sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 28-40.
    3. Kivimaa, Paula & Boon, Wouter & Hyysalo, Sampsa & Klerkx, Laurens, 2019. "Towards a typology of intermediaries in sustainability transitions: A systematic review and a research agenda," Research Policy, Elsevier, vol. 48(4), pages 1062-1075.
    4. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    5. Glover, Dominic & Poole, Nigel, 2019. "Principles of innovation to build nutrition-sensitive food systems in South Asia," Food Policy, Elsevier, vol. 82(C), pages 63-73.
    6. Hirschhorn, Fabio & Paulsson, Alexander & Sørensen, Claus H. & Veeneman, Wijnand, 2019. "Public transport regimes and mobility as a service: Governance approaches in Amsterdam, Birmingham, and Helsinki," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 178-191.
    7. Robert H. W. Boyer & Nicole D. Peterson & Poonam Arora & Kevin Caldwell, 2016. "Five Approaches to Social Sustainability and an Integrated Way Forward," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    8. Quitzow, Rainer, 2015. "Assessing policy strategies for the promotion of environmental technologies: A review of India's National Solar Mission," Research Policy, Elsevier, vol. 44(1), pages 233-243.
    9. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    10. Pekkarinen, Satu & Melkas, Helinä, 2019. "Welfare state transition in the making: Focus on the niche-regime interaction in Finnish elderly care services," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 240-253.
    11. Ajaz, Warda & Bernell, David, 2021. "California's adoption of microgrids: A tale of symbiotic regimes and energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Stephan Schwarzinger & David Neil Bird & Tomas Moe Skjølsvold, 2019. "Identifying Consumer Lifestyles through Their Energy Impacts: Transforming Social Science Data into Policy-Relevant Group-Level Knowledge," Sustainability, MDPI, vol. 11(21), pages 1-22, November.
    13. Mohsen H. Farhangi & Margherita E. Turvani & Arnold van der Valk & Gerrit J. Carsjens, 2020. "High-Tech Urban Agriculture in Amsterdam: An Actor Network Analysis," Sustainability, MDPI, vol. 12(10), pages 1-35, May.
    14. Xifeng Wu & Yue Shen & Jin Chen & Yu Chen, 2023. "Social–financial approach for analyzing financial transitions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    15. Jenkins, Kirsten & Sovacool, Benjamin K. & McCauley, Darren, 2018. "Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change," Energy Policy, Elsevier, vol. 117(C), pages 66-74.
    16. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    17. Wiarda, Martijn & Sobota, Vladimir C.M. & Janssen, Matthijs J. & van de Kaa, Geerten & Yaghmaei, Emad & Doorn, Neelke, 2023. "Public participation in mission-oriented innovation projects," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    18. Ajaz, Warda & Bernell, David, 2021. "Microgrids and the transition toward decentralized energy systems in the United States: A Multi-Level Perspective," Energy Policy, Elsevier, vol. 149(C).
    19. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    20. Murto, Pekka & Jalas, Mikko & Juntunen, Jouni & Hyysalo, Sampsa, 2019. "The difficult process of adopting a comprehensive energy retrofit in housing companies: Barriers posed by nascent markets and complicated calculability," Energy Policy, Elsevier, vol. 132(C), pages 955-964.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3323-:d:807584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.