Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2023.122777
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- An, Hyoung Joon & Ahn, Sang-Jin, 2016. "Emerging technologies—beyond the chasm: Assessing technological forecasting and its implication for innovation management in Korea," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 132-142.
- Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
- Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
- Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
- Dosi, Giovanni, 1993.
"Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change,"
Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
- Dosi, Giovanni, 1982. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 11(3), pages 147-162, June.
- Martin Kunc & Michael J. Mortenson & Richard Vidgen, 2018. "A computational literature review of the field of System Dynamics from 1974 to 2017," Journal of Simulation, Taylor & Francis Journals, vol. 12(2), pages 115-127, April.
- Chen, Ssu-Han & Huang, Mu-Hsuan & Chen, Dar-Zen, 2012. "Identifying and visualizing technology evolution: A case study of smart grid technology," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1099-1110.
- Junmo Kim & Juneseuk Shin, 2018. "Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1439-1459, September.
- Lizarralde, Rafael & Ganzarain, Jaione & Zubizarreta, Mikel, 2022. "Adaptation of the MIVES method for the strategic selection of new technologies at an R&D centre. Focus on the manufacturing sector," Technovation, Elsevier, vol. 115(C).
- Joseph P. Martino, 1980. "Technological Forecasting---An Overview," Management Science, INFORMS, vol. 26(1), pages 28-33, January.
- Hyunseok Park & Janghyeok Yoon & Kwangsoo Kim, 2013. "Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 883-909, December.
- Lin, Deming & Liu, Wenbin & Guo, Yinxin & Meyer, Martin, 2021. "Using technological entropy to identify technology life cycle," Journal of Informetrics, Elsevier, vol. 15(2).
- Wu, Zhanglan & Shao, Qinglong & Su, Yantao & Zhang, Dan, 2021. "A socio-technical transition path for new energy vehicles in China: A multi-level perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
- Adamuthe, Amol C. & Thampi, Gopakumaran T., 2019. "Technology forecasting: A case study of computational technologies," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 181-189.
- Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
- Ahmad, Tanveer & Zhang, Dongdong, 2022. "A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting," Energy, Elsevier, vol. 239(PB).
- Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
- Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
- Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Birgitte Andersen, 1999. "The hunt for S-shaped growth paths in technological innovation: a patent study," Journal of Evolutionary Economics, Springer, vol. 9(4), pages 487-526.
- Fattori, Michele & Pedrazzi, Giorgio & Turra, Roberta, 2003. "Text mining applied to patent mapping: a practical business case," World Patent Information, Elsevier, vol. 25(4), pages 335-342, December.
- Chen, Hongshu & Zhang, Guangquan & Zhu, Donghua & Lu, Jie, 2017. "Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 39-52.
- Palmié, Maximilian & Wincent, Joakim & Parida, Vinit & Caglar, Umur, 2020. "The evolution of the financial technology ecosystem: An introduction and agenda for future research on disruptive innovations in ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
- Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
- Renjie Hu & Wencong Ma & Weiqiang Lin & Xiude Chen & Zuchang Zhong & Chuhong Zeng & Zhipeng Tang, 2022. "Technology Topic Identification and Trend Prediction of New Energy Vehicle Using LDA Modeling," Complexity, Hindawi, vol. 2022, pages 1-20, March.
- Niemann, Helen & Moehrle, Martin G. & Frischkorn, Jonas, 2017. "Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 210-220.
- Hopster, Jeroen, 2021. "What are socially disruptive technologies?," Technology in Society, Elsevier, vol. 67(C).
- Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
- Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).
- Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghaffari, Mohsen & Aliahmadi, Alireza & Khalkhali, Abolfazl & Zakery, Amir & Daim, Tugrul U. & Yalcin, Haydar, 2023. "Topic-based technology mapping using patent data analysis: A case study of vehicle tires," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
- Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
- Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Myoungjae Choi & Sun-Hi Yoo & Jongtaik Lee & Jeongsub Choi & Byunghoon Kim, 2022. "A modified gamma/Gompertz/NBD model for estimating technology lifetime," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5731-5751, October.
- Na Zhang & Chao Sun & Min Xu & Xuemei Wang & Jia Deng, 2023. "Catching Up of Latecomer Economies in ICT for Sustainable Development: An Analysis Based on Technology Life Cycle Using Patent Data," Sustainability, MDPI, vol. 15(11), pages 1-29, June.
- Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
- Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022.
"Robots and the origin of their labour-saving impact,"
Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Fabio Montobbio & Jacopo Staccioli & Maria Enrica Virgillito & Marco Vivarelli, 2020. "Robots and the origin of their labour saving impact," DISCE - Quaderni del Dipartimento di Politica Economica dipe0009, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Fabio Montobbio & Jacopo Staccioli & Maria Enrica Virgillito & Marco Vivarelli, 2020. "Robots and the origin of their labour-saving impact," LEM Papers Series 2020/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2020. "Robots and the origin of their labour-saving impact," MERIT Working Papers 2020-007, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
- Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2020. "Robots and the Origin of Their Labour-Saving Impact," IZA Discussion Papers 12967, Institute of Labor Economics (IZA).
- Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2020. "Robots and the origin of their labour-saving impact," GLO Discussion Paper Series 471, Global Labor Organization (GLO).
- Nicoló Barbieri & François Perruchas & Davide Consoli, 2020.
"Specialization, Diversification, and Environmental Technology Life Cycle,"
Economic Geography, Taylor & Francis Journals, vol. 96(2), pages 161-186, March.
- Nicoló Barbieri & François Perruchas & Davide Consoli, 2018. "Specialization, diversification and environmental technology life-cycle," Papers in Evolutionary Economic Geography (PEEG) 1838, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2018.
- Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
- Schmidt, Arne & Walter, Sascha G. & Walter, Achim, 2010. "Contingency Factors and the Technology-Performance-Relationship in Start-ups," EconStor Preprints 37082, ZBW - Leibniz Information Centre for Economics.
- Eilers, Kathi & Frischkorn, Jonas & Eppinger, Elisabeth & Walter, Lothar & Moehrle, Martin G., 2019. "Patent-based semantic measurement of one-way and two-way technology convergence: The case of ultraviolet light emitting diodes (UV-LEDs)," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 341-353.
- Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).
More about this item
Keywords
Deep learning technology; Tech mining; Technological evolution; Data-trait-driven modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.