IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v193y2023ics0040162523002615.html
   My bibliography  Save this article

Topic-based technology mapping using patent data analysis: A case study of vehicle tires

Author

Listed:
  • Ghaffari, Mohsen
  • Aliahmadi, Alireza
  • Khalkhali, Abolfazl
  • Zakery, Amir
  • Daim, Tugrul U.
  • Yalcin, Haydar

Abstract

The analysis of patent certificates for the purpose of determining the technologies of an industry is a method that has been used by experts and researchers of technology management and technology forecasting for nearly two decades. Meanwhile, using different techniques and software and completing the experiences of past researches have increased the speed, accuracy, and practicality of the relevant reports. In this study, the tire industry has been investigated with regard to its prominent role in the future automobile and transportation industry. All tire-related patent certificates in the last 20 years were extracted from the Derwent Innovation Index database using a search string and IPC codes, and with the help of Latent Dirichlet Allocation (LDA) which is an unsupervised machine learning method, the relevant technology areas were extracted. The analysis of technologies and forecasting future technology areas were conducted regarding the share and growth rate of each technology in two 10-year periods (2000–2009 and 2010–2019) and the study of trends and technical indicators related to the industry and value chain. The analysis of nine technology areas considered by tire industry innovators during the last 20 years, as well as the analysis of trends and effective factors on these technologies indicated that the fields of airless tires and intelligent tires technology areas would be highly welcomed in the future and become the dominant and extensively-used technologies of the tire industry in the future.

Suggested Citation

  • Ghaffari, Mohsen & Aliahmadi, Alireza & Khalkhali, Abolfazl & Zakery, Amir & Daim, Tugrul U. & Yalcin, Haydar, 2023. "Topic-based technology mapping using patent data analysis: A case study of vehicle tires," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:tefoso:v:193:y:2023:i:c:s0040162523002615
    DOI: 10.1016/j.techfore.2023.122576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523002615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hongshu & Jin, Qianqian & Wang, Ximeng & Xiong, Fei, 2022. "Profiling academic-industrial collaborations in bibliometric-enhanced topic networks: A case study on digitalization research," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Donghyun Choi & Bomi Song, 2018. "Exploring Technological Trends in Logistics: Topic Modeling-Based Patent Analysis," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    3. Savin, Ivan & Ott, Ingrid & Konop, Chris, 2022. "Tracing the evolution of service robotics: Insights from a topic modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    4. Daiho Uhm & Jea-Bok Ryu & Sunghae Jun, 2017. "An Interval Estimation Method of Patent Keyword Data for Sustainable Technology Forecasting," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    5. Jun Yang & Shunke Ai & Bin-Bin Zhang & Bing Zhang & Zi-Ke Liu & Xiangyu Ivy Wang & Yu-Han Yang & Yi-Han Yin & Ye Li & Hou-Jun Lü, 2022. "A long-duration gamma-ray burst with a peculiar origin," Nature, Nature, vol. 612(7939), pages 232-235, December.
    6. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    7. Haydar Yalcin & Tugrul Daim, 2021. "Mining research and invention activity for innovation trends: case of blockchain technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3775-3806, May.
    8. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    9. Xiaoping Zhou & Longkai Xiao & Xiao Lu & Dongqi Sun, 2020. "Impact of road transportation development on habitat quality in economically developed areas: A case study of Jiangsu Province, China," Growth and Change, Wiley Blackwell, vol. 51(2), pages 852-871, June.
    10. An, Hyoung Joon & Ahn, Sang-Jin, 2016. "Emerging technologies—beyond the chasm: Assessing technological forecasting and its implication for innovation management in Korea," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 132-142.
    11. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    12. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
    14. Ma, Tingting & Zhou, Xiao & Liu, Jia & Lou, Zhenkai & Hua, Zhaoting & Wang, Ruitao, 2021. "Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    15. Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    16. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    17. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    18. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    19. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    20. Yalcin, Haydar & Daim, Tugrul U., 2022. "Logistics, supply chain management and technology research: An analysis on the axis of technology mining," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    21. Erzurumlu, S. Sinan & Pachamanova, Dessislava, 2020. "Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    22. Scott W. Cunningham & Jan H. Kwakkel & Sertaç Oruç, 2017. "Technological Frontiers and Embeddings: A Visualization Approach," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 14(02), pages 1-21, April.
    23. Chen, Hongshu & Zhang, Guangquan & Zhu, Donghua & Lu, Jie, 2017. "Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 39-52.
    24. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    25. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    26. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    27. Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
    28. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    29. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seok Jin Youn & Yong-Jae Lee & Ha-Eun Han & Chang-Woo Lee & Donggyun Sohn & Chulung Lee, 2024. "A Data Analytics and Machine Learning Approach to Develop a Technology Roadmap for Next-Generation Logistics Utilizing Underground Systems," Sustainability, MDPI, vol. 16(15), pages 1-32, August.
    2. Podrecca, Matteo & Culot, Giovanna & Tavassoli, Sam & Orzes, Guido, 2024. "Artificial intelligence for climate change: a patent analysis in the manufacturing sector," Papers in Innovation Studies 2024/12, Lund University, CIRCLE - Centre for Innovation Research.
    3. Qiang Gao & Man Jiang, 2024. "Exploring technology fusion by combining latent Dirichlet allocation with Doc2vec: a case of digital medicine and machine learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4043-4070, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    2. Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    3. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    4. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    5. Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    6. Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    7. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    8. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    9. Li, Libo & Yu, Huan & Kunc, Martin, 2024. "The impact of forum content on data science open innovation performance: A system dynamics-based causal machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    10. Yang, Zaoli & Wu, Qingyang & Venkatachalam, K. & Li, Yuchen & Xu, Bing & Trojovský, Pavel, 2022. "Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    11. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    12. Naeini, Ali Bonyadi & Zamani, Mehdi & Daim, Tugrul U. & Sharma, Mahak & Yalcin, Haydar, 2022. "Conceptual structure and perspectives on “innovation management”: A bibliometric review," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    13. Erzurumlu, S. Sinan & Pachamanova, Dessislava, 2020. "Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    14. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
    15. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    16. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    17. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    18. Garza Ramos, Alejandro & Daim, Tugrul & Gaats, Lukas & Hutmacher, Dietmar W. & Hackenberger, David, 2022. "Technology roadmap for the development of a 3D cell culture workstation for a biomedical industry startup," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    19. Kim, Juram & Hong, Suckwon & Kang, Yubin & Lee, Changyong, 2023. "Domain-specific valuation of university technologies using bibliometrics, Jonckheere–Terpstra tests, and data envelopment analysis," Technovation, Elsevier, vol. 122(C).
    20. Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:193:y:2023:i:c:s0040162523002615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.