Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2016.10.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xinhai Liu & Shi Yu & Frizo Janssens & Wolfgang Glänzel & Yves Moreau & Bart De Moor, 2010. "Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(6), pages 1105-1119, June.
- Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
- Osmo Kuusi & Martin Meyer, 2007. "Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 759-777, March.
- Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
- Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008.
"Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density,"
Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
- Nooteboom, B. & Gilsing, V.A. & Vanhaverbeke, W.P.M. & Duijsters, G.M. & Oord, A., 2006. "Network Embeddedness and the Exploration of Novel Technologies : Technological Distance, Betweenness Centrality and Density," Discussion Paper 2006-32, Tilburg University, Center for Economic Research.
- Nooteboom, B. & Gilsing, V.A. & Vanhaverbeke, W.P.M. & Duijsters, G.M. & Oord, A., 2006. "Network Embeddedness and the Exploration of Novel Technologies : Technological Distance, Betweenness Centrality and Density," Other publications TiSEM 4fae41f2-1e69-40f2-89f5-6, Tilburg University, School of Economics and Management.
- Victor Gilsing & Bart Noteboom & Wim Vanhaverbeke & Geert Duysters & Ad van Noord, 2006. "Network embeddedness and the exploration of novel technologies: technological distance, betweenness centrality and density," Working Papers 06-08, Eindhoven Center for Innovation Studies, revised Apr 2006.
- Gilsing, V.A. & Nooteboom, B. & van Haverbeke, W.P.M. & Duijsters, G.M. & Oord, A., 2008. "Network embeddedness and the exploration of novel technologies : Technological distance, betweenness centrality and density," Other publications TiSEM 762e80f1-0adc-4184-b1be-9, Tilburg University, School of Economics and Management.
- Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993.
"Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
- Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1992. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," NBER Working Papers 3993, National Bureau of Economic Research, Inc.
- Jaffe, A.B. & Trajtenberg, M., 1992. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," Papers 14-92, Tel Aviv.
- Martin G. Moehrle, 2010. "Measures for textual patent similarities: a guided way to select appropriate approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 95-109, October.
- von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
- Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
- Chen, Ssu-Han & Huang, Mu-Hsuan & Chen, Dar-Zen, 2012. "Identifying and visualizing technology evolution: A case study of smart grid technology," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1099-1110.
- Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
- Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
- Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
- Ansgar Moeller & Martin G. Moehrle, 2015. "Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 77-96, January.
- Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
- J. Gower & P. Legendre, 1986. "Metric and Euclidean properties of dissimilarity coefficients," Journal of Classification, Springer;The Classification Society, vol. 3(1), pages 5-48, March.
- Martin G. Moehrle & Jan M. Gerken, 2012. "Measuring textual patent similarity on the basis of combined concepts: design decisions and their consequences," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 805-826, June.
- S. Phineas Upham & Lori Rosenkopf & Lyle H. Ungar, 2010. "Positioning knowledge: schools of thought and new knowledge creation," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 555-581, May.
- Rost, Katja, 2011. "The strength of strong ties in the creation of innovation," Research Policy, Elsevier, vol. 40(4), pages 588-604, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
- Eilers, Kathi & Frischkorn, Jonas & Eppinger, Elisabeth & Walter, Lothar & Moehrle, Martin G., 2019. "Patent-based semantic measurement of one-way and two-way technology convergence: The case of ultraviolet light emitting diodes (UV-LEDs)," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 341-353.
- Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
- Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
- Fredström, Ashkan & Wincent, Joakim & Sjödin, David & Oghazi, Pejvak & Parida, Vinit, 2021. "Tracking innovation diffusion: AI analysis of large-scale patent data towards an agenda for further research," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
- Chung, Park & Sohn, So Young, 2020. "Early detection of valuable patents using a deep learning model: Case of semiconductor industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2019. "Bibliographically coupled patents: Their temporal pattern and combined relevance," Journal of Informetrics, Elsevier, vol. 13(4).
- Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
- Kristóf Gyódi & Łukasz Nawaro & Michał Paliński & Maciej Wilamowski, 2023. "Informing policy with text mining: technological change and social challenges," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 933-954, February.
- Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Xia Cao & Chuanyun Li & Wei Chen & Jinqiu Li & Chaoran Lin, 2020. "Research on the invulnerability and optimization of the technical cooperation innovation network based on the patent perspective—A case study of new energy vehicles," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-19, September.
- Xia Cao & Chuanyun Li & Jinqiu Li & Yunchang Li, 2022. "Modeling and simulation of knowledge creation and diffusion in an industry-university-research cooperative innovation network: a case study of China’s new energy vehicles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3935-3957, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Hyunseok Park & Janghyeok Yoon & Kwangsoo Kim, 2013. "Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 883-909, December.
- Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
- Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
- Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
- Roman Jurowetzki, 2015. "Unpacking Big Systems - Natural Language Processing meets Network Analysis. A Study of Smart Grid Development in Denmark," SPRU Working Paper Series 2015-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
- Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
- Eilers, Kathi & Frischkorn, Jonas & Eppinger, Elisabeth & Walter, Lothar & Moehrle, Martin G., 2019. "Patent-based semantic measurement of one-way and two-way technology convergence: The case of ultraviolet light emitting diodes (UV-LEDs)," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 341-353.
- Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).
- Ansgar Moeller & Martin G. Moehrle, 2015. "Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 77-96, January.
- Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.
- Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
- Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
- Jeon, Daeseong & Ahn, Joon Mo & Kim, Juram & Lee, Changyong, 2022. "A doc2vec and local outlier factor approach to measuring the novelty of patents," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Yoon, Janghyeok & Park, Hyunseok & Seo, Wonchul & Lee, Jae-Min & Coh, Byoung-youl & Kim, Jonghwa, 2015. "Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 153-167.
- Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.
- Aharonson, Barak S. & Schilling, Melissa A., 2016. "Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution," Research Policy, Elsevier, vol. 45(1), pages 81-96.
More about this item
Keywords
Patent lanes; Patent analysis; Cluster analysis; Similarity measurement; Visualization; Citation networks; Technological trajectories;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:115:y:2017:i:c:p:210-220. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.