IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v156y2020ics0040162519315161.html
   My bibliography  Save this article

Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations

Author

Listed:
  • Erzurumlu, S. Sinan
  • Pachamanova, Dessislava

Abstract

Developing technologies for a transfer from science to market is a key element of research-intensive organizations such as innovation management centers that work closely with inventors to commercialize their technological innovations. To advance the commercial viability of technological innovations, this paper proposes a framework that integrates topic modeling, survival analysis, and judgment of subject matter experts to forecast promising technologies using patents as data resources. Regarding the commercial viability of identified technologies, our empirical analysis focuses on patents and licensing data from a prominent innovation management center over a 20-year period. We are able to identify technologies that are statistically significant for predicting the likelihood and the time until a patent is commercialized, and suggest a way to assess their scope of technological impact. Our results contribute to the understanding of promising healthcare technologies and help R&D managers to develop the knowledge they need to advocate technologies in support of commercial returns.

Suggested Citation

  • Erzurumlu, S. Sinan & Pachamanova, Dessislava, 2020. "Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:tefoso:v:156:y:2020:i:c:s0040162519315161
    DOI: 10.1016/j.techfore.2020.120041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162519315161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Rachel H. & Gaukler, Gary M. & Lee, Chang Won, 2016. "Improving healthcare quality: A technological and managerial innovation perspective," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 373-378.
    2. Wagner, Stefan & Wakeman, Simon, 2016. "What do patent-based measures tell us about product commercialization? Evidence from the pharmaceutical industry," Research Policy, Elsevier, vol. 45(5), pages 1091-1102.
    3. Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
    4. Kasch, Silja & Dowling, Michael, 2008. "Commercialization strategies of young biotechnology firms: An empirical analysis of the U.S. industry," Research Policy, Elsevier, vol. 37(10), pages 1765-1777, December.
    5. Seema Sharma & V. J. Thomas, 2008. "Inter-country R&D efficiency analysis: An application of data envelopment analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 483-501, September.
    6. Gans, Joshua S. & Stern, Scott, 2003. "The product market and the market for "ideas": commercialization strategies for technology entrepreneurs," Research Policy, Elsevier, vol. 32(2), pages 333-350, February.
    7. Campbell, Richard S., 1983. "Patent trends as a technological forecasting tool," World Patent Information, Elsevier, vol. 5(3), pages 137-143.
    8. Liu, Xiang & Jiang, Tingting & Ma, Feicheng, 2013. "Collective dynamics in knowledge networks: Emerging trends analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 425-438.
    9. Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
    10. Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
    11. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    12. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    13. Dotsika, Fefie & Watkins, Andrew, 2017. "Identifying potentially disruptive trends by means of keyword network analysis," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 114-127.
    14. Liliana Mitkova & Wang Xuefeng & Pengjun Qui & Donghua Zhu & Ming Lei & Alan L. Porter, 2015. "Identification of technology development trends based on subject–action–object analysis: The case of dye-sensitized solar cells," Post-Print hal-01202391, HAL.
    15. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    16. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    17. Ali, Ayfer & Gittelman, Michelle, 2016. "Research paradigms and useful inventions in medicine: Patents and licensing by teams of clinical and basic scientists in Academic Medical Centers," Research Policy, Elsevier, vol. 45(8), pages 1499-1511.
    18. Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
    19. Bonino, Dario & Ciaramella, Alberto & Corno, Fulvio, 2010. "Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics," World Patent Information, Elsevier, vol. 32(1), pages 30-38, March.
    20. Wanying Ding & Chaomei Chen, 2014. "Dynamic topic detection and tracking: A comparison of HDP, C-word, and cocitation methods," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(10), pages 2084-2097, October.
    21. Agarwal, Nivedita & Chakrabarti, Ronika & Brem, Alexander & Bocken, Nancy, 2018. "Market driving at Bottom of the Pyramid (BoP): An analysis of social enterprises from the healthcare sector," Journal of Business Research, Elsevier, vol. 86(C), pages 234-244.
    22. Lucas, Christopher & Nielsen, Richard A. & Roberts, Margaret E. & Stewart, Brandon M. & Storer, Alex & Tingley, Dustin, 2015. "Computer-Assisted Text Analysis for Comparative Politics," Political Analysis, Cambridge University Press, vol. 23(2), pages 254-277, April.
    23. Lehoux, P. & Miller, F.A. & Daudelin, G., 2017. "Converting clinical risks into economic value: The role of expectations and institutions in health technology development," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 206-216.
    24. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    25. Sonne, Lina, 2012. "Innovative initiatives supporting inclusive innovation in India: Social business incubation and micro venture capital," Technological Forecasting and Social Change, Elsevier, vol. 79(4), pages 638-647.
    26. Hsieh, Chih-Hung, 2013. "Patent value assessment and commercialization strategy," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 307-319.
    27. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    28. Chen, Hongshu & Zhang, Guangquan & Zhu, Donghua & Lu, Jie, 2017. "Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 39-52.
    29. Dubaric, Ervin & Giannoccaro, Dimitris & Bengtsson, Rune & Ackermann, Thomas, 2011. "Patent data as indicators of wind power technology development," World Patent Information, Elsevier, vol. 33(2), pages 144-149, June.
    30. Bo Wang & Shengbo Liu & Kun Ding & Zeyuan Liu & Jing Xu, 2014. "Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 685-704, October.
    31. Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
    32. Moehrle, Martin G. & Walter, Lothar & Bergmann, Isumo & Bobe, Sebastian & Skrzipale, Svenja, 2010. "Patinformatics as a business process: A guideline through patent research tasks and tools," World Patent Information, Elsevier, vol. 32(4), pages 291-299, December.
    33. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    34. Margaret E. Roberts & Brandon M. Stewart & Edoardo M. Airoldi, 2016. "A Model of Text for Experimentation in the Social Sciences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 988-1003, July.
    35. Edoardo M. Airoldi & Jonathan M. Bischof, 2016. "Improving and Evaluating Topic Models and Other Models of Text," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1381-1403, October.
    36. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    37. S. Ravikumar & Ashutosh Agrahari & S. N. Singh, 2015. "Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 929-955, January.
    38. Agarwal, Nivedita & Brem, Alexander & Grottke, Michael, 2018. "Towards a higher socio-economic impact through shared understanding of product requirements in emerging markets: The case of the Indian healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 91-98.
    39. Henry Grabowski & John Vernon, 1990. "A New Look at the Returns and Risks to Pharmaceutical R&D," Management Science, INFORMS, vol. 36(7), pages 804-821, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazemi, Kawa & Burkhardt, Dirk & Kock, Alexander, 2022. "Visual Analytics for Technology and Innovation Management: An Interaction Approach for Strategic Decision Making," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136215, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Rathi, Sawan & Majumdar, Adrija & Chatterjee, Chirantan, 2024. "Did the COVID-19 pandemic propel usage of AI in pharmaceutical innovation? New evidence from patenting data," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    3. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    4. Ma, Tingting & Zhou, Xiao & Liu, Jia & Lou, Zhenkai & Hua, Zhaoting & Wang, Ruitao, 2021. "Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Shaygan, Amir & Daim, Tugrul, 2023. "Technology management maturity assessment model in healthcare research centers," Technovation, Elsevier, vol. 120(C).
    6. Percia David, Dimitri & Maréchal, Loïc & Lacube, William & Gillard, Sébastien & Tsesmelis, Michael & Maillart, Thomas & Mermoud, Alain, 2023. "Measuring security development in information technologies: A scientometric framework using arXiv e-prints," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    7. Berk Wheelock, Lauren & Pachamanova, Dessislava A., 2022. "Acceptable set topic modeling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 653-673.
    8. Haessler, Philipp & Giones, Ferran & Brem, Alexander, 2023. "The who and how of commercializing emerging technologies: A technology-focused review," Technovation, Elsevier, vol. 121(C).
    9. Belousova, Olga A. & Groen, Aard J. & Ouendag, Aniek M., 2020. "Opportunities and barriers for innovation and entrepreneurship in orphan drug development," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Madjid Tavana & Akram Shaabani & Francisco Javier Santos-Arteaga & Iman Raeesi Vanani, 2020. "A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics," Energies, MDPI, vol. 13(15), pages 1-23, August.
    11. repec:dar:wpaper:130792 is not listed on IDEAS
    12. Jiao, Zhilun & Shahid, Muhammad Shehryar & Mirza, Nawazish & Tan, Zhixiong, 2021. "Should the fourth industrial revolution be widespread or confined geographically? A country-level analysis of fintech economies," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Ghaffari, Mohsen & Aliahmadi, Alireza & Khalkhali, Abolfazl & Zakery, Amir & Daim, Tugrul U. & Yalcin, Haydar, 2023. "Topic-based technology mapping using patent data analysis: A case study of vehicle tires," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    14. Youngho Kim & Sangsung Park & Junseok Lee & Dongsik Jang & Jiho Kang, 2021. "Integrated Survival Model for Predicting Patent Litigation Hazard," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    15. Cedano, Karla G. & Hernández-Granados, Araceli, 2021. "Defining strategies to improve success of technology transfer efforts: An integrated tool for risk assessment," Technology in Society, Elsevier, vol. 64(C).
    16. Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    17. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. Li, Libo & Yu, Huan & Kunc, Martin, 2024. "The impact of forum content on data science open innovation performance: A system dynamics-based causal machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    2. Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    3. Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    4. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    5. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    6. Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
    7. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    8. Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    9. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    10. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    11. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    12. Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    13. Ghaffari, Mohsen & Aliahmadi, Alireza & Khalkhali, Abolfazl & Zakery, Amir & Daim, Tugrul U. & Yalcin, Haydar, 2023. "Topic-based technology mapping using patent data analysis: A case study of vehicle tires," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    14. Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).
    15. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    16. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    17. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    18. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    19. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    20. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:156:y:2020:i:c:s0040162519315161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.