IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6240-d284443.html
   My bibliography  Save this article

Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer

Author

Listed:
  • Ki Hong Kim

    (Department of Industrial Management Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul 02841, Korea)

  • Young Jae Han

    (Railroad Type Approval Team, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang, Gyeonggi 16105, Korea)

  • Sugil Lee

    (Propulsion System Research Team, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang, Gyeonggi 16105, Korea)

  • Sung Won Cho

    (Department of Industrial Management Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul 02841, Korea)

  • Chulung Lee

    (Department of Industrial Management Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul 02841, Korea)

Abstract

Governments around the world are planning to ban sales of vehicles running on petroleum-based fuels as an effort to reduce greenhouse gas emissions, and electric vehicles surfaced as a solution to decrease pollutants produced by the transportation sector. As a result, wireless power transfer technology has recently gained much attention as a convenient and practical method for charging electric vehicles. In this paper, patent analysis is conducted to identify emerging and vacant technology areas of wireless power transfer. Topics are first extracted from patents by text mining, and the topics with similar semantics are grouped together to form clusters. Then, the process of identifying emerging and vacant technology areas is improved by applying a time series analysis and innovation cycle of technology to the clustering result. Lastly, the results of clustering, time series, and innovation cycle are compared to minimize the possibility of misidentifying emerging and vacant technology areas, thus improving the accuracy of the identification process and the validity of the identified technology areas. The analysis results revealed that one emerging technology area and two vacant technology areas exist in wireless power transfer. The emerging technology area identified is circuitries consisting of transmitter coils and receiver coils for wireless power transfer, and the two vacant technology areas identified are wireless charging methods based on resonant inductive coupling and wireless power transfer condition monitoring methods or devices.

Suggested Citation

  • Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6240-:d:284443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
    2. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    3. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    4. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    5. Huang, Mu-Hsuan & Chang, Han-Wen & Chen, Dar-Zen, 2012. "The trend of concentration in scientific research and technological innovation: A reduction of the predominant role of the U.S. in world research & technology," Journal of Informetrics, Elsevier, vol. 6(4), pages 457-468.
    6. Cho, Han Pil & Lim, Hyunsu & Lee, Dongmin & Cho, Hunhee & Kang, Kyung-In, 2018. "Patent analysis for forecasting promising technology in high-rise building construction," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 144-153.
    7. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    8. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    9. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    10. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
    11. Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
    12. Beaumont, Adrian N., 2014. "Data transforms with exponential smoothing methods of forecasting," International Journal of Forecasting, Elsevier, vol. 30(4), pages 918-927.
    13. Dar-Zen Chen & Han-Wen Chang & Mu-Hsuan Huang & Feng-Cheng Fu, 2005. "Core technologies and key industries in Taiwan from 1978 to 2002: A perspective from patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(1), pages 31-53, July.
    14. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    15. Manohar, Mahesh & Lathabai, H.H. & George, Susan & Prabhakaran, Thara, 2018. "Wire-free electricity: Insights from a techno-futuristic exploration," Utilities Policy, Elsevier, vol. 53(C), pages 3-14.
    16. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    17. Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
    18. Kwon, Heeyeul & Kim, Jieun & Park, Yongtae, 2017. "Applying LSA text mining technique in envisioning social impacts of emerging technologies: The case of drone technology," Technovation, Elsevier, vol. 60, pages 15-28.
    19. Sun, Longzhao & Ma, Dianguang & Tang, Houjun, 2018. "A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 490-503.
    20. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    21. Choi, Jinho & Hwang, Yong-Sik, 2014. "Patent keyword network analysis for improving technology development efficiency," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 170-182.
    22. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    23. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    24. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    25. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    26. Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
    27. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
    28. Niemann, Helen & Moehrle, Martin G. & Frischkorn, Jonas, 2017. "Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 210-220.
    29. Song, Kisik & Kim, Karp Soo & Lee, Sungjoo, 2017. "Discovering new technology opportunities based on patents: Text-mining and F-term analysis," Technovation, Elsevier, vol. 60, pages 1-14.
    30. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    31. Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
    32. Jacques Michel & Bernd Bettels, 2001. "Patent citation analysis.A closer look at the basic input data from patent search reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 185-201, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin-Yun Huang & Jian-Feng Cai & Tien-Chen Lee & Min-Hang Weng, 2020. "A Study on the Development Trends of the Energy System with Blockchain Technology Using Patent Analysis," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    2. Podrecca, Matteo & Culot, Giovanna & Tavassoli, Sam & Orzes, Guido, 2024. "Artificial intelligence for climate change: a patent analysis in the manufacturing sector," Papers in Innovation Studies 2024/12, Lund University, CIRCLE - Centre for Innovation Research.
    3. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    4. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    5. Ghaffari, Mohsen & Aliahmadi, Alireza & Khalkhali, Abolfazl & Zakery, Amir & Daim, Tugrul U. & Yalcin, Haydar, 2023. "Topic-based technology mapping using patent data analysis: A case study of vehicle tires," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    6. Jun Hong Park & Hyunseog Chung & Ki Hong Kim & Jin Ju Kim & Chulung Lee, 2021. "The Impact of Technological Capability on Financial Performance in the Semiconductor Industry," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    7. Sangsung Park & Sunghae Jun, 2020. "Patent Keyword Analysis of Disaster Artificial Intelligence Using Bayesian Network Modeling and Factor Analysis," Sustainability, MDPI, vol. 12(2), pages 1-11, January.
    8. Koopo Kwon & Jaeryong So, 2023. "Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    9. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Eunsuk Chun & Sungchan Jun & Chulung Lee, 2021. "Identification of Promising Smart Farm Technologies and Development of Technology Roadmap Using Patent Map Analysis," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    11. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    12. Chieh-Wa Tsai & Tung-Kuan Liu & Po-Wen Hsueh, 2020. "Patent Analysis of High Efficiency Tunneling Oxide Passivated Contact Solar Cells," Energies, MDPI, vol. 13(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    2. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    3. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    4. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
    5. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    6. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    7. Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
    8. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    9. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    10. Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2018. "Knowledge Push Curve (KPC) in retailing: Evidence from patented innovations analysis affecting retailers' competitiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 44(C), pages 150-160.
    11. Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
    12. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    13. Chung, Park & Sohn, So Young, 2020. "Early detection of valuable patents using a deep learning model: Case of semiconductor industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    14. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    15. Jumi Hwang & Kyung Hee Kim & Jong Gyu Hwang & Sungchan Jun & Jiwon Yu & Chulung Lee, 2020. "Technological Opportunity Analysis: Assistive Technology for Blind and Visually Impaired People," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    16. Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
    17. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    18. Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    20. Jinho Choi & Nina Shin & Yong Sik Chang, 2021. "Strategic Investment Decisions for Emerging Technology Fields in the Health Care Sector Based on M&A Analysis," Sustainability, MDPI, vol. 13(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6240-:d:284443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.