Technology identification from patent texts: A novel named entity recognition method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2022.122160
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vicente-Gomila, J.M. & Artacho-Ramírez, M.A. & Ting, Ma & Porter, A.L., 2021. "Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
- Robinson, Douglas K.R. & Huang, Lu & Guo, Ying & Porter, Alan L., 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 267-285.
- Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
- Suominen, Arho & Toivanen, Hannes & Seppänen, Marko, 2017. "Firms' knowledge profiles: Mapping patent data with unsupervised learning," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 131-142.
- Jose M. Vicente-Gomila & Anna Palli & Begoña Calle & Miguel A. Artacho & Sara Jimenez, 2017. "Discovering shifts in competitive strategies in probiotics, accelerated with TechMining," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1907-1923, June.
- Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
- Sercan Ozcan & Nazrul Islam, 2017. "Patent information retrieval: approaching a method and analysing nanotechnology patent collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 941-970, May.
- Morteza Maghrebi & Ali Abbasi & Saeid Amiri & Reza Monsefi & Ahad Harati, 2011. "A collective and abridged lexical query for delineation of nanotechnology publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 15-25, January.
- Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015.
"What is an emerging technology?,"
Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
- Daniele Rotolo & Diana Hicks & Ben Martin, 2015. "What is an emerging technology?," SPRU Working Paper Series 2015-06, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
- Yuan Zhou & Fang Dong & Yufei Liu & Zhaofu Li & JunFei Du & Li Zhang, 2020. "Forecasting emerging technologies using data augmentation and deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 1-29, April.
- de Rassenfosse, Gaétan & Dernis, Hélène & Guellec, Dominique & Picci, Lucio & van Pottelsberghe de la Potterie, Bruno, 2013.
"The worldwide count of priority patents: A new indicator of inventive activity,"
Research Policy, Elsevier, vol. 42(3), pages 720-737.
- Gaétan de Rassenfosse & Hélène Dernis & Dominique Guellec & Lucio Picci & Bruno van Pottelsberghe de la Potterie, 2012. "The Worldwide Count of Priority Patents: A New Indicator of Inventive Activity," Melbourne Institute Working Paper Series wp2012n23, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
- Gaétan de Rassenfosse & Hélène Dernis & Dominique Guellec & Picci Lucio & Bruno Van Pottelsberghe, 2012. "The worldwide count of priority patents: A new indicator of inventive activity," Working Papers ECARES ECARES 2012-019, ULB -- Universite Libre de Bruxelles.
- Arts, Sam & Hou, Jianan & Gomez, Juan Carlos, 2021. "Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures," Research Policy, Elsevier, vol. 50(2).
- Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
- Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
- Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
- Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
- Shaobo Li & Jie Hu & Yuxin Cui & Jianjun Hu, 2018. "DeepPatent: patent classification with convolutional neural networks and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 721-744, November.
- Gustafsson, Robin & Kuusi, Osmo & Meyer, Martin, 2015. "Examining open-endedness of expectations in emerging technological fields: The case of cellulosic ethanol," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 179-193.
- Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
- D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
- Luciano Kay & Nils Newman & Jan Youtie & Alan L. Porter & Ismael Rafols, 2014. "Patent overlay mapping: Visualizing technological distance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2432-2443, December.
- Niemann, Helen & Moehrle, Martin G. & Frischkorn, Jonas, 2017. "Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 210-220.
- Song, Chie Hoon & Elvers, David & Leker, Jens, 2017. "Anticipation of converging technology areas — A refined approach for the identification of attractive fields of innovation," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 98-115.
- Yu, Xiang & Zhang, Ben, 2019. "Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 273-283.
- Jeffrey Kuhn & Kenneth Younge & Alan Marco, 2020. "Patent citations reexamined," RAND Journal of Economics, RAND Corporation, vol. 51(1), pages 109-132, March.
- Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
- Eun Han & So Sohn, 2015. "Patent valuation based on text mining and survival analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 821-839, October.
- Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
- Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
- Tom Magerman & Bart Looy & Xiaoyan Song, 2010. "Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 289-306, February.
- Xu, Jianguo & Guo, Lixiang & Jiang, Jiang & Ge, Bingfeng & Li, Mengjun, 2019. "A deep learning methodology for automatic extraction and discovery of technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 339-351.
- Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
- Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
- Righi, Cesare & Simcoe, Timothy, 2019. "Patent examiner specialization," Research Policy, Elsevier, vol. 48(1), pages 137-148.
- Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
- Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
- Song, Bomi & Suh, Yongyoon, 2019. "Identifying convergence fields and technologies for industrial safety: LDA-based network analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 115-126.
- Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
- D. Thorleuchter & D. Van Den Poel & A. Prinzie & -, 2010. "A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/632, Ghent University, Faculty of Economics and Business Administration.
- Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
- Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
- Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2023. "Industry 5.0 and Triple Bottom Line Approach in Supply Chain Management: The State-of-the-Art," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
- Fareri, Silvia & Apreda, Riccardo & Mulas, Valentina & Alonso, Ruben, 2023. "The worker profiler: Assessing the digital skill gaps for enhancing energy efficiency in manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
- Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2024. "The impact of ChatGPT on human skills: A quantitative study on twitter data," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
- Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Chiarello, Filippo & Giordano, Vito & Spada, Irene & Barandoni, Simone & Fantoni, Gualtiero, 2024. "Future applications of generative large language models: A data-driven case study on ChatGPT," Technovation, Elsevier, vol. 133(C).
- Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
- Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
- Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
- Uijun Kwon & Youngjung Geum, 2020. "Identification of promising inventions considering the quality of knowledge accumulation: a machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1877-1897, December.
- Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2024. "The impact of ChatGPT on human skills: A quantitative study on twitter data," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
- Jiang, Man & Yang, Siluo & Gao, Qiang, 2024. "Multidimensional indicators to identify emerging technologies: Perspective of technological knowledge flow," Journal of Informetrics, Elsevier, vol. 18(1).
- Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
- Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
- Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
More about this item
Keywords
Information retrieval; Named entity recognition; Natural language processing; Patents; Technology analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:186:y:2023:i:pb:s0040162522006813. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.