A clustering-based approach for the evaluation of candidate emerging technologies
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-020-03535-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
- Park, Jongyong & Lee, Hakyeon & Park, Yongtae, 2009. "Disembodied knowledge flows among industrial clusters: A patent analysis of the Korean manufacturing sector," Technology in Society, Elsevier, vol. 31(1), pages 73-84.
- Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
- An, Hyoung Joon & Ahn, Sang-Jin, 2016. "Emerging technologies—beyond the chasm: Assessing technological forecasting and its implication for innovation management in Korea," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 132-142.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Tong, Xuesong & Frame, J. Davidson, 1994. "Measuring national technological performance with patent claims data," Research Policy, Elsevier, vol. 23(2), pages 133-141, March.
- Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
- Chang, Shann-Bin, 2012. "Using patent analysis to establish technological position: Two different strategic approaches," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 3-15.
- Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
- E. Bacchiocchi & F. Montobbio, 2009.
"Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations,"
The Journal of Technology Transfer, Springer, vol. 34(2), pages 169-181, April.
- Emanuele Bacchiocchi & Fabio Montobbio, 2006. "Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations," KITeS Working Papers 193, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Dec 2006.
- Chen-Yuan Liu & Jhen-Cheng Wang, 2010. "Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 21-36, January.
- Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
- Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
- Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
- Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
- Novelli, Elena, 2015. "An examination of the antecedents and implications of patent scope," Research Policy, Elsevier, vol. 44(2), pages 493-507.
- Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
- Marco, Antonio De & Scellato, Giuseppe & Ughetto, Elisa & Caviggioli, Federico, 2017. "Global markets for technology: Evidence from patent transactions," Research Policy, Elsevier, vol. 46(9), pages 1644-1654.
- Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
- Clancy, Matthew S., 2018. "Inventing by combining pre-existing technologies: Patent evidence on learning and fishing out," Research Policy, Elsevier, vol. 47(1), pages 252-265.
- Mueller, Simon C. & Sandner, Philipp G. & Welpe, Isabell M., 2015. "Monitoring innovation in electrochemical energy storage technologies: A patent-based approach," Applied Energy, Elsevier, vol. 137(C), pages 537-544.
- Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
- Sujit Bhattacharya, 2004. "Mapping inventive activity and technological change through patent analysis: A case study of India and China," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(3), pages 361-381, November.
- Choi, Jinho & Hwang, Yong-Sik, 2014. "Patent keyword network analysis for improving technology development efficiency," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 170-182.
- Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
- Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
- Boh, Wai Fong & Evaristo, Roberto & Ouderkirk, Andrew, 2014. "Balancing breadth and depth of expertise for innovation: A 3M story," Research Policy, Elsevier, vol. 43(2), pages 349-366.
- Fischer, Timo & Leidinger, Jan, 2014. "Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions," Research Policy, Elsevier, vol. 43(3), pages 519-529.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
- Wang, Jinfeng & Zhang, Zhixin & Feng, Lijie & Lin, Kuo-Yi & Liu, Peng, 2023. "Development of technology opportunity analysis based on technology landscape by extending technology elements with BERT and TRIZ," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
- Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
- Tingting Wei & Danyu Feng & Shiling Song & Cai Zhang, 2024. "An extraction and novelty evaluation framework for technology knowledge elements of patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 7417-7442, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
- Chung, Park & Sohn, So Young, 2020. "Early detection of valuable patents using a deep learning model: Case of semiconductor industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Uijun Kwon & Youngjung Geum, 2020. "Identification of promising inventions considering the quality of knowledge accumulation: a machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1877-1897, December.
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Martin Kalthaus, 2020.
"Knowledge recombination along the technology life cycle,"
Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
- Martin Kalthaus, 2016. "Knowledge recombination along the technology life cycle," Jena Economics Research Papers 2016-012, Friedrich-Schiller-University Jena.
- Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
- Kim, Juram & Lee, Gyumin & Lee, Seungbin & Lee, Changyong, 2022. "Towards expert–machine collaborations for technology valuation: An interpretable machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
- Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
- Kim, Juram & Hong, Suckwon & Kang, Yubin & Lee, Changyong, 2023. "Domain-specific valuation of university technologies using bibliometrics, Jonckheere–Terpstra tests, and data envelopment analysis," Technovation, Elsevier, vol. 122(C).
- Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Caviggioli, Federico & De Marco, Antonio & Montobbio, Fabio & Ughetto, Elisa, 2020. "The licensing and selling of inventions by US universities," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
- Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
- Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
- Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
- Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Erzurumlu, S. Sinan & Pachamanova, Dessislava, 2020. "Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
- Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
More about this item
Keywords
Candidate emerging technologies; Dental implant technology; Patent analysis; Clustering algorithms; Technology indexes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:124:y:2020:i:2:d:10.1007_s11192-020-03535-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.