IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v77y2022ics030142072200085x.html
   My bibliography  Save this article

Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining

Author

Listed:
  • Wang, Chang
  • Geng, Hongjun
  • Sun, Rui
  • Song, Huiling

Abstract

Graphene is considered the most promising and revolutionary frontier material in the 21st century, thus both developed and emerging countries have accelerated the advanced deployment of graphene innovation strategies. However, the evaluation of technological potential and vacant technology in the graphene field is still missing in existing studies, leading to the problems of less decision-making information for the government and innovation subjects. To fill this gap, this study constructs a comprehensive framework for technological opportunity analysis based on the patent data mining method. According to this framework, the key graphene technologies are firstly identified, then the potential of these key graphene technologies is predicted, and vacant graphene technologies are also revealed to enlighten future directions of graphene technology. Results indicate that the identified 10 key graphene technologies include nano-film technology, composite material technology for vehicles, graphene composite material preparation technology, graphene reinforcing agents, lithium battery electrode technology, nanotechnology, cycle equipment processing, battery and fuel cell electrode technology, coating technology, and graphene conductive ink technology. Graphene nanotechnology and graphene composite material preparation technology are currently in the growth stage and maturation stage, respectively; and the remaining 8 key graphene technologies enter into the saturation stage. Furthermore, 25 vacant technology areas in the graphene field have been detected, and breakthrough measures such as changing material structure and improving experimental equipment could help achieve the innovation of vacant graphene technologies. The policy implications for the innovation of graphene technology are also provided in the end.

Suggested Citation

  • Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s030142072200085x
    DOI: 10.1016/j.resourpol.2022.102636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142072200085X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Douglas K.R. & Huang, Lu & Guo, Ying & Porter, Alan L., 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 267-285.
    2. Jianhua Hou & Xiucai Yang, 2019. "Patent sleeping beauties: evolutionary trajectories and identification methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 187-215, July.
    3. Yu, Xiang & Zhang, Ben, 2019. "Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 273-283.
    4. Ho, Jonathan C. & Saw, Ewe-Chai & Lu, Louis Y.Y. & Liu, John S., 2014. "Technological barriers and research trends in fuel cell technologies: A citation network analysis," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 66-79.
    5. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    6. Cho, Han Pil & Lim, Hyunsu & Lee, Dongmin & Cho, Hunhee & Kang, Kyung-In, 2018. "Patent analysis for forecasting promising technology in high-rise building construction," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 144-153.
    7. Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
    8. Peng Hui Lv & Gui-Fang Wang & Yong Wan & Jia Liu & Qing Liu & Fei-cheng Ma, 2011. "Bibliometric trend analysis on global graphene research," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 399-419, August.
    9. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    10. Xi Yang & Xiang Yu & Xin Liu, 2018. "Obtaining a Sustainable Competitive Advantage from Patent Information: A Patent Analysis of the Graphene Industry," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    11. Mariani, Manuel Sebastian & Medo, Matúš & Lafond, François, 2019. "Early identification of important patents: Design and validation of citation network metrics," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 644-654.
    12. Nguyen, Ai Linh & Liu, Wenyuan & Khor, Khiam Aik & Nanetti, Andrea & Cheong, Siew Ann, 2020. "The golden eras of graphene science and technology: Bibliographic evidences from journal and patent publications," Journal of Informetrics, Elsevier, vol. 14(4).
    13. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    14. Dedrick, Jason & Kraemer, Kenneth L., 2015. "Who captures value from science-based innovation? The distribution of benefits from GMR in the hard disk drive industry," Research Policy, Elsevier, vol. 44(8), pages 1615-1628.
    15. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    16. Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
    17. Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
    18. Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
    19. D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
    20. Ma, Jing & Abrams, Natalie F. & Porter, Alan L. & Zhu, Donghua & Farrell, Dorothy, 2019. "Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 767-775.
    21. Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
    22. Aharonson, Barak S. & Schilling, Melissa A., 2016. "Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution," Research Policy, Elsevier, vol. 45(1), pages 81-96.
    23. Kim, Juram & Kim, Seungho & Lee, Changyong, 2019. "Anticipating technological convergence: Link prediction using Wikipedia hyperlinks," Technovation, Elsevier, vol. 79(C), pages 25-34.
    24. K. S. Novoselov & V. I. Fal′ko & L. Colombo & P. R. Gellert & M. G. Schwab & K. Kim, 2012. "A roadmap for graphene," Nature, Nature, vol. 490(7419), pages 192-200, October.
    25. Moehrle, Martin G. & Caferoglu, Hüseyin, 2019. "Technological speciation as a source for emerging technologies. Using semantic patent analysis for the case of camera technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 776-784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    2. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    3. Koopo Kwon & Sungchan Jun & Yong-Jae Lee & Sanghei Choi & Chulung Lee, 2022. "Logistics Technology Forecasting Framework Using Patent Analysis for Technology Roadmap," Sustainability, MDPI, vol. 14(9), pages 1-30, April.
    4. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
    2. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    3. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    4. Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    5. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    6. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    7. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
    8. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    9. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    10. Wang, Jinfeng & Zhang, Zhixin & Feng, Lijie & Lin, Kuo-Yi & Liu, Peng, 2023. "Development of technology opportunity analysis based on technology landscape by extending technology elements with BERT and TRIZ," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    11. Ma, Tingting & Zhou, Xiao & Liu, Jia & Lou, Zhenkai & Hua, Zhaoting & Wang, Ruitao, 2021. "Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    12. Li, Munan & Porter, Alan L. & Suominen, Arho, 2018. "Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 285-296.
    13. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    14. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    15. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    16. Gibson, Elizabeth & Daim, Tugrul U. & Dabic, Marina, 2019. "Evaluating university industry collaborative research centers," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 181-202.
    17. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    18. Chan-Yuan Wong & Hon-Ngen Fung, 2017. "Science-technology-industry correlative indicators for policy targeting on emerging technologies: exploring the core competencies and promising industries of aspirant economies," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 841-867, May.
    19. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    20. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s030142072200085x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.