IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119308378.html
   My bibliography  Save this article

Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications

Author

Listed:
  • Shabir, Faizan
  • Sultan, Muhammad
  • Miyazaki, Takahiko
  • Saha, Bidyut B.
  • Askalany, Ahmed
  • Ali, Imran
  • Zhou, Yuguang
  • Ahmad, Riaz
  • Shamshiri, Redmond R.

Abstract

Adsorption cooling is getting huge attention from last few years due to environment-friendly and thermally-driven technology. Many systems designs based on various adsorbent-adsorbate pairs are investigated worldwide to develop a cost-effective and high-performance system. Until now, performance of the systems is lower as compared to conventional compressor-based systems. Performance of the adsorption systems mainly depends on adsorption equilibrium, adsorption kinetics, isosteric heat of adsorption, and thermo-physical/chemical properties of assorted adsorbent-refrigerant pairs. Thereby, the present study aims to review and compare the physical properties (surface area, pore volume/size etc.) of adsorbents and adsorption equilibrium (adsorption isotherm) by various types of adsorbent-adsorbate pairs available in the literature. Amount of adsorbate adsorbed per unit mass of adsorbent has been critically reviewed and compared accordingly. Highest adsorption uptake was attributed in case of R-32 adsorption onto phenol resin-based activated carbon i.e. 2.23 kg/kg (excess adsorption) and 2.34 kg/kg (absolute adsorption) at 30 °C and 1670 kPa. Activated carbon of type Maxsorb-III being highly microporous possesses high surface area and shows good adsorption uptakes for most of the adsorbates including ethanol, methanol R-134a, CO2, R-507A and n-butane. In addition, fundamentals, principle and features of adsorption cooling systems are discussed. Adsorption equilibrium models used to express the adsorption mechanics of adsorbent-adsorbate pairs are explored, and the models’ parameters are collectively listed and discussed. The review is useful to prioritize available adsorbent-adsorbate pairs for adsorption based heat transformation applications. The study is useful for researchers working for the development of adsorbent materials for various applications and conditions.

Suggested Citation

  • Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119308378
    DOI: 10.1016/j.rser.2019.109630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boubakri, A. & Arsalane, M. & Yous, B. & Ali-Moussa, L. & Pons, M. & Meunier, F. & Guilleminot, J.J., 1992. "Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)—1. Performance in actual site," Renewable Energy, Elsevier, vol. 2(1), pages 7-13.
    2. Choudhury, B. & Chatterjee, P.K. & Sarkar, J.P., 2010. "Review paper on solar-powered air-conditioning through adsorption route," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2189-2195, October.
    3. Shmroukh, Ahmed N. & Ali, Ahmed Hamza H. & Ookawara, Shinichi, 2015. "Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 445-456.
    4. Rezk, Ahmed & AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Ahmed, 2013. "Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications," Applied Energy, Elsevier, vol. 112(C), pages 1025-1031.
    5. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    6. Attan, Dalia & Alghoul, M.A. & Saha, B.B. & Assadeq, J. & Sopian, K., 2011. "The role of activated carbon fiber in adsorption cooling cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1708-1721, April.
    7. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    8. Bouzid, Mohamed & Sellaoui, Lotfi & Khalfaoui, Mohamed & Belmabrouk, Hafedh & Lamine, Abdelmottaleb Ben, 2016. "Adsorption of ethanol onto activated carbon: Modeling and consequent interpretations based on statistical physics treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 853-869.
    9. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    10. Elsayed, Ahmed M. & Askalany, Ahmed A. & Shea, Andrew D. & Dakkama, Hassan J. & Mahmoud, Saad & Al-Dadah, Raya & Kaialy, Waseem, 2017. "A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 503-519.
    11. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    12. Myat, Aung & Kim Choon, Ng & Thu, Kyaw & Kim, Young-Deuk, 2013. "Experimental investigation on the optimal performance of Zeolite–water adsorption chiller," Applied Energy, Elsevier, vol. 102(C), pages 582-590.
    13. Saha, Bidyut Baran & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Koyama, Shigeru & Henninger, Stefan K. & Herbst, Annika & Janiak, Christoph, 2015. "Ethanol adsorption onto metal organic framework: Theory and experiments," Energy, Elsevier, vol. 79(C), pages 363-370.
    14. Brancato, V. & Frazzica, A. & Sapienza, A. & Gordeeva, L. & Freni, A., 2015. "Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system," Energy, Elsevier, vol. 84(C), pages 177-185.
    15. Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Lim, Leo Sing, 2011. "Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2061-2072, May.
    16. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo, 2018. "Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1874-1908.
    17. Fan, Wu & Chakraborty, Anutosh & Kayal, Sibnath, 2016. "Adsorption cooling cycles: Insights into carbon dioxide adsorption on activated carbons," Energy, Elsevier, vol. 102(C), pages 491-501.
    18. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    19. Solmus, Ismail & YamalI, Cemil & Kaftanoglu, Bilgin & Baker, Derek & Çaglar, Ahmet, 2010. "Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles," Applied Energy, Elsevier, vol. 87(6), pages 2062-2067, June.
    20. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    21. Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
    22. Jing, Hu & Exell, R.H.B., 1994. "Simulation and sensitivity analysis of an intermittent solar-powered charcoal/methanol refrigerator," Renewable Energy, Elsevier, vol. 4(1), pages 133-149.
    23. Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2016. "Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system," Renewable Energy, Elsevier, vol. 86(C), pages 785-795.
    24. Askalany, Ahmed A. & Saha, Bidyut B. & Kariya, Keishi & Ismail, Ibrahim M. & Salem, Mahmoud & Ali, Ahmed H.H. & Morsy, Mahmoud G., 2012. "Hybrid adsorption cooling systems–An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5787-5801.
    25. Shengchang Xiang & Yabing He & Zhangjing Zhang & Hui Wu & Wei Zhou & Rajamani Krishna & Banglin Chen, 2012. "Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    26. Alam, K.C.A. & Kang, Y.T. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2003. "A novel approach to determine optimum switching frequency of a conventional adsorption chiller," Energy, Elsevier, vol. 28(10), pages 1021-1037.
    27. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    28. Saha, Bidyut B. & Koyama, Shigeru & Choon Ng, Kim & Hamamoto, Yoshinori & Akisawa, Atsushi & Kashiwagi, Takao, 2006. "Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller," Renewable Energy, Elsevier, vol. 31(13), pages 2076-2090.
    29. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    2. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Agata Mlonka-Medrala & Marcin Sowa & Wojciech Nowak, 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Maher, Hisham & Rupam, Tahmid Hasan & Rocky, Kaiser Ahmed & Bassiouny, Ramadan & Saha, Bidyut Baran, 2022. "Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester," Energy, Elsevier, vol. 238(PB).
    4. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    5. Mahmoud Badawy Elsheniti & Mohamed Shaaban Eissa & Hany Al-Ansary & Jamel Orfi & Osama Elsamni & Abdelrahman El-Leathy, 2022. "Examination of Using Aluminum-Foam/Finned-Tube Beds Packed with Maxsorb III for Adsorption Ice Production System," Energies, MDPI, vol. 15(8), pages 1-21, April.
    6. Strelova, S.V. & Aristov, Yu. I. & Gordeeva, L.G., 2023. "Dynamics of water vapour sorption on composite LiCl/(silica gel): An innovative configuration of the adsorbent bed," Energy, Elsevier, vol. 283(C).
    7. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    8. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Asfahan, Hafiz M. & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed A. & Shahzad, Muhammad W. & Worek, William, 2022. "Recent development in adsorption desalination: A state of the art review," Applied Energy, Elsevier, vol. 328(C).
    10. Piotr Boruta & Tomasz Bujok & Łukasz Mika & Karol Sztekler, 2021. "Adsorbents, Working Pairs and Coated Beds for Natural Refrigerants in Adsorption Chillers—State of the Art," Energies, MDPI, vol. 14(15), pages 1-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    2. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    3. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    4. Narayanan, Shankar & Kim, Hyunho & Umans, Ari & Yang, Sungwoo & Li, Xiansen & Schiffres, Scott N. & Rao, Sameer R. & McKay, Ian S. & Rios Perez, Carlos A. & Hidrovo, Carlos H. & Wang, Evelyn N., 2017. "A thermophysical battery for storage-based climate control," Applied Energy, Elsevier, vol. 189(C), pages 31-43.
    5. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    6. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    7. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    8. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    9. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    10. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    11. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    12. Asfahan, Hafiz M. & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed A. & Shahzad, Muhammad W. & Worek, William, 2022. "Recent development in adsorption desalination: A state of the art review," Applied Energy, Elsevier, vol. 328(C).
    13. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    15. Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    16. Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.
    17. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    18. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    19. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    20. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119308378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.