IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp491-501.html
   My bibliography  Save this article

Adsorption cooling cycles: Insights into carbon dioxide adsorption on activated carbons

Author

Listed:
  • Fan, Wu
  • Chakraborty, Anutosh
  • Kayal, Sibnath

Abstract

We present an extensive study to measure CO2 uptakes on various AC (activated carbons) such as Maxsorb III, ACF-A20, BPL, Norit and honeycomb monolith for the temperatures ranging from 303 K to 363 K and pressures up to 10 MPa. These adsorbent samples were characterized using adsorption of nitrogen, XRD (X-ray diffraction), FTIR (Fourier transform infrared) and SEM (scanning electron micrography). The isosteric heat of adsorption (Qst) at low surface coverage is calculated form experimentally measured isotherm data. In this paper, the Qst at low surface coverage is calculated theoretically as a function of the collision diameter and the well depth potential of activated carbons – CO2 system. These results are compared with experimental data. Employing thermodynamic frameworks of adsorbent – adsorbate system and Qst formulation as a function of adsorbent pore widths, the COP (coefficient of performance) of adsorption cooler is calculated for various heat source and cooling load temperatures. It is found that the COP is influenced mainly by the pore sizes of solid adsorbents, and the adsorptive sites between the adsorbent-adsorbate systems. The present study confirms that the pore widths of activated carbons ranging from 7 to 15 Å allow us to obtain the best cooling performances.

Suggested Citation

  • Fan, Wu & Chakraborty, Anutosh & Kayal, Sibnath, 2016. "Adsorption cooling cycles: Insights into carbon dioxide adsorption on activated carbons," Energy, Elsevier, vol. 102(C), pages 491-501.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:491-501
    DOI: 10.1016/j.energy.2016.02.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saha, Bidyut B. & Boelman, Elisa C. & Kashiwagi, Takao, 1995. "Computational analysis of an advanced adsorption-refrigeration cycle," Energy, Elsevier, vol. 20(10), pages 983-994.
    2. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    3. Okunev, Boris N. & Aristov, Yuri I., 2014. "Making adsorptive chillers faster by a proper choice of adsorption isobar shape: Comparison of optimal and real adsorbents," Energy, Elsevier, vol. 76(C), pages 400-405.
    4. Sun, Baichuan & Chakraborty, Anutosh, 2015. "Thermodynamic frameworks of adsorption kinetics modeling: Dynamic water uptakes on silica gel for adsorption cooling applications," Energy, Elsevier, vol. 84(C), pages 296-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rupa, Mahua Jahan & Pal, Animesh & Saha, Bidyut Baran, 2020. "Activated carbon-graphene nanoplatelets based green cooling system: Adsorption kinetics, heat of adsorption, and thermodynamic performance," Energy, Elsevier, vol. 193(C).
    2. Singh, Vinod Kumar & Kumar, E. Anil & Saha, Bidyut Baran, 2018. "Adsorption isotherms, kinetics and thermodynamic simulation of CO2-CSAC pair for cooling application," Energy, Elsevier, vol. 160(C), pages 1158-1173.
    3. Sangeetha, Thangavel & Li, I-Ting & Lan, Tzu-Hsuan & Wang, Chin-Tsan & Yan, Wei-Mon, 2021. "A fluid dynamics perspective on the flow dependent performance of honey comb microbial fuel cells," Energy, Elsevier, vol. 214(C).
    4. Jalil, E. & Goudarzi, K., 2020. "Effect of adsorbent configuration on performance enhancement of continuous solar adsorption chiller with four quadric parabolic concentrators," Renewable Energy, Elsevier, vol. 158(C), pages 360-369.
    5. Park, Jaewoo & Attia, Nour F. & Jung, Minji & Lee, Myoung Eun & Lee, Kiyoung & Chung, Jaewoo & Oh, Hyunchul, 2018. "Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation," Energy, Elsevier, vol. 158(C), pages 9-16.
    6. Pal, Animesh & Uddin, Kutub & Saha, Bidyut Baran & Thu, Kyaw & Kil, Hyun-Sig & Yoon, Seong-Ho & Miyawaki, Jin, 2020. "A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons," Applied Energy, Elsevier, vol. 264(C).
    7. Shi, Qingmin & Cui, Shidong & Wang, Shuangming & Mi, Yichen & Sun, Qiang & Wang, Shengquan & Shi, Chenyu & Yu, Jizhou, 2022. "Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment," Energy, Elsevier, vol. 254(PA).
    8. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    2. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
    3. An, G.L. & Wang, L.W. & Gao, J. & Wang, R.Z., 2018. "A review on the solid sorption mechanism and kinetic models of metal halide-ammonia working pairs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 783-792.
    4. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    5. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    6. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    7. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    8. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    9. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    10. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    11. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    12. Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
    13. Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
    14. Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
    15. Jiang, L. & Wang, L.W. & Luo, W.L. & Wang, R.Z., 2015. "Experimental study on working pairs for two-stage chemisorption freezing cycle," Renewable Energy, Elsevier, vol. 74(C), pages 287-297.
    16. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    17. Khan, M.Z.I. & Saha, B.B. & Alam, K.C.A. & Akisawa, A. & Kashiwagi, T., 2007. "Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery," Renewable Energy, Elsevier, vol. 32(3), pages 365-381.
    18. Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.
    19. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    20. Romero Gómez, J. & Ferreiro Garcia, R. & De Miguel Catoira, A. & Romero Gómez, M., 2013. "Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 74-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:491-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.