IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i4p2061-2072.html
   My bibliography  Save this article

Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review

Author

Listed:
  • Abdullah, Mohammad Omar
  • Tan, Ivy Ai Wei
  • Lim, Leo Sing

Abstract

Refrigeration and air-conditioning technology are required to evolve in accordance to Montreal Protocol adopted in 1987 and Kyoto Protocol in 1997. This regulation concerns about the climate change in an attempt to phase-out chlorofluorocarbons (CFCs), followed by hydro-chlorofluorocarbons (HCFCs) and then moving to 1,1,1,2-tetrafluoroethane (HFC-134a) starting 2011. This trend leads to a strong demand of new systems for air-conditioning, especially in automobile. Adsorption cooling system, among other proposed cooling technologies, has a very good potential for automobile applications. Hence, there exists a need for a creative design and innovation to allow adsorption technology to be practical for air-conditioning in automobile in a near future. Oil palm shell-based activated carbon has been widely applied in various environmental pollution control technologies, mainly due to its high adsorption performance yet low cost. However, limited studies have been carried out on the characteristics and application of oil palm shell-based activated carbon in adsorption air-conditioning system. This paper is to present a comprehensive review on the past efforts in the field of adsorption air-conditioning systems for automobile. This work also aims to investigate the physicochemical properties of oil palm shell-based activated carbon and its feasibility for application in adsorption air-conditioning system. Some of the limitations are outlined and suggestions for future improvements are pointed out.

Suggested Citation

  • Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Lim, Leo Sing, 2011. "Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2061-2072, May.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:4:p:2061-2072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(11)00036-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannidou, O. & Zabaniotou, A., 2007. "Agricultural residues as precursors for activated carbon production--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1966-2005, December.
    2. Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
    3. Wang, R. Z., 2001. "Adsorption refrigeration research in Shanghai Jiao Tong University," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 1-37, March.
    4. Dieng, A. O. & Wang, R. Z., 2001. "Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 313-342, December.
    5. Critoph, R.E., 1994. "An ammonia carbon solar refrigerator for vaccine cooling," Renewable Energy, Elsevier, vol. 5(1), pages 502-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    2. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    3. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    4. Elsayed, Ahmed M. & Askalany, Ahmed A. & Shea, Andrew D. & Dakkama, Hassan J. & Mahmoud, Saad & Al-Dadah, Raya & Kaialy, Waseem, 2017. "A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 503-519.
    5. Ramji, Harunal Rejan & Leo, Sing Lim & Abdullah, Mohammad Omar, 2014. "Parametric study and simulation of a heat-driven adsorber for air conditioning system employing activated carbon–methanol working pair," Applied Energy, Elsevier, vol. 113(C), pages 324-333.
    6. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    7. Gao, P. & Wang, L.W. & Zhu, F.Q., 2021. "Vapor-compression refrigeration system coupled with a thermochemical resorption energy storage unit for a refrigerated truck," Applied Energy, Elsevier, vol. 290(C).
    8. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    9. Qi, Zhaogang, 2014. "Advances on air conditioning and heat pump system in electric vehicles – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 754-764.
    10. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    11. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    12. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    2. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    3. Zhai, X.Q. & Wang, R.Z. & Dai, Y.J. & Wu, J.Y. & Ma, Q., 2008. "Experience on integration of solar thermal technologies with green buildings," Renewable Energy, Elsevier, vol. 33(8), pages 1904-1910.
    4. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    5. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    6. Yong, Li & Sumathy, K., 2002. "Review of mathematical investigation on the closed adsorption heat pump and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 305-338, August.
    7. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    8. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    9. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    10. Wang, S.G. & Wang, R.Z., 2005. "Recent developments of refrigeration technology in fishing vessels," Renewable Energy, Elsevier, vol. 30(4), pages 589-600.
    11. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    12. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    13. Dai, Y.J. & Sumathy, K., 2003. "Heat and mass transfer in the adsorbent of a solar adsorption cooling system with glass tube insulation," Energy, Elsevier, vol. 28(14), pages 1511-1527.
    14. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    15. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    16. Alghoul, M.A. & Sulaiman, M.Y. & Sopian, K. & Azmi, B.Z., 2009. "Performance of a dual-purpose solar continuous adsorption system," Renewable Energy, Elsevier, vol. 34(3), pages 920-927.
    17. Papadopoulos, A. M. & Oxizidis, S. & Kyriakis, N., 2003. "Perspectives of solar cooling in view of the developments in the air-conditioning sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 419-438, October.
    18. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    19. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Wang, S.G. & Wang, R.Z. & Li, X.R., 2005. "Research and development of consolidated adsorbent for adsorption systems," Renewable Energy, Elsevier, vol. 30(9), pages 1425-1441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:4:p:2061-2072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.