IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v46y2015icp16-29.html
   My bibliography  Save this article

An overview of solid desiccant dehumidification and air conditioning systems

Author

Listed:
  • Sultan, Muhammad
  • El-Sharkawy, Ibrahim I.
  • Miyazaki, Takahiko
  • Saha, Bidyut Baran
  • Koyama, Shigeru

Abstract

To address the importance of desiccant air-conditioning (DAC) systems, this paper discusses the comparison between DAC and conventional vapor compression air-conditioning (VAC). Performance and economic feasibility (PEF) of the system is conferred with reference literature to correlate the types of DAC system from the perspective of energy saving and system payback period. The present study provides three examples of existing desiccant cooling systems namely (i) standalone DAC system, (ii) single-stage hybrid DAC system, and (iii) two-stage hybrid DAC system, which highlight their importance under different environmental conditions. This study provides scientific and experimental supports on how the standalone or hybrid desiccant cooling can be a supplement to the exiting VAC system.

Suggested Citation

  • Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
  • Handle: RePEc:eee:rensus:v:46:y:2015:i:c:p:16-29
    DOI: 10.1016/j.rser.2015.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115001264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karamanis, D. & Vardoulakis, E., 2012. "Application of zeolitic materials prepared from fly ash to water vapor adsorption for solar cooling," Applied Energy, Elsevier, vol. 97(C), pages 334-339.
    2. Bolaji, B.O. & Huan, Z., 2013. "Ozone depletion and global warming: Case for the use of natural refrigerant – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 49-54.
    3. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    4. Kiplagat, J.K. & Wang, R.Z. & Oliveira, R.G. & Li, T.X. & Liang, M., 2013. "Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat," Applied Energy, Elsevier, vol. 103(C), pages 571-580.
    5. Enteria, Napoleon & Yoshino, Hiroshi & Satake, Akira & Mochida, Akashi & Takaki, Rie & Yoshie, Ryuichiro & Baba, Seizo, 2010. "Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production," Applied Energy, Elsevier, vol. 87(2), pages 478-486, February.
    6. Grignon-Massé, Laurent & Rivière, Philippe & Adnot, Jérôme, 2011. "Strategies for reducing the environmental impacts of room air conditioners in Europe," Energy Policy, Elsevier, vol. 39(4), pages 2152-2164, April.
    7. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    8. Thoruwa, T.F.N. & Smith, J.E. & Grant, A.D. & Johnstone, C.M., 1996. "Developments in solar drying using forced ventilation and solar regenerated desiccant materials," Renewable Energy, Elsevier, vol. 9(1), pages 686-689.
    9. Baniyounes, Ali M. & Liu, Gang & Rasul, M.G. & Khan, M.M.K., 2012. "Analysis of solar desiccant cooling system for an institutional building in subtropical Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6423-6431.
    10. Zhu, Jun & Chen, Wu, 2014. "Energy and exergy performance analysis of a marine rotary desiccant air-conditioning system based on orthogonal experiment," Energy, Elsevier, vol. 77(C), pages 953-962.
    11. Ali Mandegari, M. & Pahlavanzadeh, H., 2009. "Introduction of a new definition for effectiveness of desiccant wheels," Energy, Elsevier, vol. 34(6), pages 797-803.
    12. Baniyounes, Ali M. & Rasul, M.G. & Khan, M.M.K., 2013. "Assessment of solar assisted air conditioning in Central Queensland's subtropical climate, Australia," Renewable Energy, Elsevier, vol. 50(C), pages 334-341.
    13. Rao, Zhonghao & Wang, Shuangfeng & Zhang, Zhengguo, 2012. "Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3136-3145.
    14. Pramuang, Surajitr & Exell, R.H.B., 2007. "The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator," Renewable Energy, Elsevier, vol. 32(1), pages 173-182.
    15. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    16. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    17. Baniyounes, Ali M. & Liu, Gang & Rasul, M.G. & Khan, M.M.K., 2013. "Comparison study of solar cooling technologies for an institutional building in subtropical Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 421-430.
    18. Lee, S.H. & Lee, W.L., 2013. "Site verification and modeling of desiccant-based system as an alternative to conventional air-conditioning systems for wet markets," Energy, Elsevier, vol. 55(C), pages 1076-1083.
    19. Thoruwa, T.F.N & Johnstone, C.M & Grant, A.D & Smith, J.E, 2000. "Novel, low cost CaCl2 based desiccants for solar crop drying applications," Renewable Energy, Elsevier, vol. 19(4), pages 513-520.
    20. Khedari, J. & Rawangkul, R. & Chimchavee, W. & Hirunlabh, J. & Watanasungsuit, A., 2003. "Feasibility study of using agriculture waste as desiccant for air conditioning system," Renewable Energy, Elsevier, vol. 28(10), pages 1617-1628.
    21. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    22. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zouaoui, Ahlem & Zili-Ghedira, Leila & Ben Nasrallah, Sassi, 2016. "Open solid desiccant cooling air systems: A review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 889-917.
    2. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    3. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    4. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    5. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    7. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    8. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    9. Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2016. "Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system," Renewable Energy, Elsevier, vol. 86(C), pages 785-795.
    10. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    11. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    12. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    13. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    14. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings," Energies, MDPI, vol. 10(10), pages 1-27, September.
    15. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    16. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    17. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    18. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    19. Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
    20. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:46:y:2015:i:c:p:16-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.