IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221019897.html
   My bibliography  Save this article

Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester

Author

Listed:
  • Maher, Hisham
  • Rupam, Tahmid Hasan
  • Rocky, Kaiser Ahmed
  • Bassiouny, Ramadan
  • Saha, Bidyut Baran

Abstract

The present study focuses on the synthesis and characterization of new composites comprising of RD silica gel and metal-organic framework (MOF) MIL-100(Fe) to upgrade the performance of the adsorption-based atmospheric water harvesting system. The impact of adding MIL-100(Fe) on the porous properties, thermal conductivity, and water adsorption characteristics of the composites has been experimentally investigated. Furthermore, three performance indicators are introduced to investigate the performance of the system, including net adsorbate uptake (Δq) and the efficiency estimation using two different approaches. Results showed that the maximum increment in the thermal conductivity was found in the composite having the highest concentration of MIL 100(Fe) (69 wt%). Thermodynamic cycles were drawn to show the performance of the composites with heat source temperatures of 50 °C and 70 °C. A composite of 29 % RD silica gel, 69 % MIL 100(Fe), and 2 % PVP showed the highest value of Δq (213.8 % increment over parent RD silica gel). In contrast, the efficiency of the system was enhanced up to 187 % than that of the silica gel-based AWH system.

Suggested Citation

  • Maher, Hisham & Rupam, Tahmid Hasan & Rocky, Kaiser Ahmed & Bassiouny, Ramadan & Saha, Bidyut Baran, 2022. "Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019897
    DOI: 10.1016/j.energy.2021.121741
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    2. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    4. Askalany, Ahmed A. & Salem, M. & Ismael, I.M. & Ali, A.H.H. & Morsy, M.G. & Saha, Bidyut B., 2013. "An overview on adsorption pairs for cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 565-572.
    5. Hyunho Kim & Sameer R. Rao & Eugene A. Kapustin & Lin Zhao & Sungwoo Yang & Omar M. Yaghi & Evelyn N. Wang, 2018. "Adsorption-based atmospheric water harvesting device for arid climates," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Jun Yeob & Park, Myeong Hyeon & Hong, Seong Ho & Baek, Jaehyun & Han, Changho & Lee, Sewon & Kang, Yong Tae & Kim, Yongchan, 2023. "Comparative performance evaluation of multi-objective optimized desiccant wheels coated with MIL-100 (Fe) and silica gel composite," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    2. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    3. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    5. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    6. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    7. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    8. Shao, Zhao & Lv, Haotian & Poredoš, Primož & Su, Shiqiang & Sun, Ruikun & Wang, Hongbin & Du, Shuai & Wang, Ruzhu, 2024. "Scaled solar-driven atmospheric water harvester with low-cost composite sorbent," Energy, Elsevier, vol. 302(C).
    9. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    10. Wang, Wenwen & Xie, Sitao & Pan, Quanwen & Dai, Yanjun & Wang, Ruzhu & Ge, Tianshu, 2021. "Air-cooled adsorption-based device for harvesting water from island air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    13. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    14. Brites, G.J.V.N. & Costa, J.J. & Costa, V.A.F., 2016. "Influence of the design parameters on the overall performance of a solar adsorption refrigerator," Renewable Energy, Elsevier, vol. 86(C), pages 238-250.
    15. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    16. Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
    17. Jiang, L. & Wang, L.W. & Luo, W.L. & Wang, R.Z., 2015. "Experimental study on working pairs for two-stage chemisorption freezing cycle," Renewable Energy, Elsevier, vol. 74(C), pages 287-297.
    18. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
    19. Shmroukh, Ahmed N. & Ali, Ahmed Hamza H. & Ookawara, Shinichi, 2015. "Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 445-456.
    20. Romero Gómez, J. & Ferreiro Garcia, R. & De Miguel Catoira, A. & Romero Gómez, M., 2013. "Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 74-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.