IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v79y2017icp503-519.html
   My bibliography  Save this article

A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications

Author

Listed:
  • Elsayed, Ahmed M.
  • Askalany, Ahmed A.
  • Shea, Andrew D.
  • Dakkama, Hassan J.
  • Mahmoud, Saad
  • Al-Dadah, Raya
  • Kaialy, Waseem

Abstract

This paper reviews, for the first time, the measurement adsorption characteristics techniques to facilitate optimal testing of the validity of adsorbent materials in adsorption applications. Thermo-physical properties, adsorption characteristics and modelling techniques are presented. The characterisation of material thermo-physical properties includes true and bulk densities, specific heat capacity, surface area, pore volume distribution and thermal conductivity. The adsorption characteristics were categorized into adsorption isotherms and kinetics including experimental and theoretical equations. A range of models used in the simulation of adsorption cooling systems is presented and discussed. The paper highlights the conditions for which each measurement technique is most suitable and the limitations of modelling techniques, which is a vital element in the robust assessment of the performance of adsorption cooling units.

Suggested Citation

  • Elsayed, Ahmed M. & Askalany, Ahmed A. & Shea, Andrew D. & Dakkama, Hassan J. & Mahmoud, Saad & Al-Dadah, Raya & Kaialy, Waseem, 2017. "A state of the art of required techniques for employing activated carbon in renewable energy powered adsorption applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 503-519.
  • Handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:503-519
    DOI: 10.1016/j.rser.2017.05.172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
    2. Wang, L.W. & Tamainot-Telto, Z. & Thorpe, R. & Critoph, R.E. & Metcalf, S.J. & Wang, R.Z., 2011. "Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration," Renewable Energy, Elsevier, vol. 36(8), pages 2062-2066.
    3. Cui, Qun & Tao, Gang & Chen, Haijun & Guo, Xinyue & Yao, Huqing, 2005. "Environmentally benign working pairs for adsorption refrigeration," Energy, Elsevier, vol. 30(2), pages 261-271.
    4. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    5. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    6. Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Lim, Leo Sing, 2011. "Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2061-2072, May.
    7. Anyanwu, E.E. & Ogueke, N.V., 2005. "Thermodynamic design procedure for solid adsorption solar refrigerator," Renewable Energy, Elsevier, vol. 30(1), pages 81-96.
    8. Zhao, Y.J. & Wang, R.Z. & Wang, L.W. & Yu, N., 2014. "Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage)," Energy, Elsevier, vol. 70(C), pages 272-277.
    9. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo & Aristov, Yuri I., 2014. "Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method," Applied Energy, Elsevier, vol. 113(C), pages 1244-1251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Girnik, I.S. & Grekova, A.D. & Li, T.X. & Wang, R.Z. & Dutta, P. & Srinivasa Murthy, S. & Aristov, Yu.I., 2020. "Composite “LiCl/MWCNT/PVA” for adsorption thermal battery: Dynamics of methanol sorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    2. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    3. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    4. Solmus, Ismail & YamalI, Cemil & Kaftanoglu, Bilgin & Baker, Derek & Çaglar, Ahmet, 2010. "Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles," Applied Energy, Elsevier, vol. 87(6), pages 2062-2067, June.
    5. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    6. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    7. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    8. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    9. An, G.L. & Wang, L.W. & Gao, J. & Wang, R.Z., 2018. "A review on the solid sorption mechanism and kinetic models of metal halide-ammonia working pairs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 783-792.
    10. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Gordeeva, Larisa & Aristov, Yuriy, 2010. "Novel sorbents of ethanol “salt confined to porous matrix” for adsorptive cooling," Energy, Elsevier, vol. 35(6), pages 2703-2708.
    12. Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
    13. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    14. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    15. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    16. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    17. Wang, L. & Chen, L. & Wang, H.L. & Liao, D.L., 2009. "The adsorption refrigeration characteristics of alkaline-earth metal chlorides and its composite adsorbents," Renewable Energy, Elsevier, vol. 34(4), pages 1016-1023.
    18. Bouzid, Mohamed & Sellaoui, Lotfi & Khalfaoui, Mohamed & Belmabrouk, Hafedh & Lamine, Abdelmottaleb Ben, 2016. "Adsorption of ethanol onto activated carbon: Modeling and consequent interpretations based on statistical physics treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 853-869.
    19. Sun, Shengnan & Yu, Qiongfen & Li, Ming & Zhao, Hong & Wu, Chunxiang, 2019. "Preparation of coffee-shell activated carbon and its application for water vapor adsorption," Renewable Energy, Elsevier, vol. 142(C), pages 11-19.
    20. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:503-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.