IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms1956.html
   My bibliography  Save this article

Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

Author

Listed:
  • Shengchang Xiang

    (Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou
    University of Texas at San Antonio, One UTSA Circle)

  • Yabing He

    (University of Texas at San Antonio, One UTSA Circle)

  • Zhangjing Zhang

    (Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou
    University of Texas at San Antonio, One UTSA Circle)

  • Hui Wu

    (NIST Center for Neutron Research
    University of Maryland)

  • Wei Zhou

    (NIST Center for Neutron Research
    University of Maryland)

  • Rajamani Krishna

    (Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904)

  • Banglin Chen

    (University of Texas at San Antonio, One UTSA Circle)

Abstract

Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve such separations and to replace current technologies, which use aqueous solvents to chemically absorb carbon dioxide. Here we show that a metal-organic frameworks (UTSA-16) displays high uptake (160 cm3 cm−3) of CO2 at ambient conditions, making it a potentially useful adsorbent material for post-combustion carbon dioxide capture and biogas stream purification. This has been further confirmed by simulated breakthrough experiments. The high storage capacities and selectivities of UTSA-16 for carbon dioxide capture are attributed to the optimal pore cages and the strong binding sites to carbon dioxide, which have been demonstrated by neutron diffraction studies.

Suggested Citation

  • Shengchang Xiang & Yabing He & Zhangjing Zhang & Hui Wu & Wei Zhou & Rajamani Krishna & Banglin Chen, 2012. "Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1956
    DOI: 10.1038/ncomms1956
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1956
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukhtar, Ahmad & Ullah, Sami & Inayat, Abrar & Saqib, Sidra & Mellon, Nurhayati Binti & Assiri, Mohammed Ali & Al-Sehemi, Abdullah G. & Khan Niazi, Muhammad Bilal & Jahan, Zaib & Bustam, Mohamad Azmi , 2021. "Synthesis-structure-property relationship of nitrogen-doped porous covalent triazine frameworks for pre-combustion CO2 capture," Energy, Elsevier, vol. 216(C).
    2. Wang, Xianfeng & Akhmedov, Novruz G. & Hopkinson, David & Hoffman, James & Duan, Yuhua & Egbebi, Adefemi & Resnik, Kevin & Li, Bingyun, 2016. "Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2," Applied Energy, Elsevier, vol. 161(C), pages 41-47.
    3. Qian Zhang & Shuaiqi Gao & Yingying Guo & Huiyong Wang & Jishi Wei & Xiaofang Su & Hucheng Zhang & Zhimin Liu & Jianji Wang, 2023. "Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.