Development of a bio-based bifunctional catalyst for simultaneous esterification and transesterification of neem seed oil: Modeling and optimization studies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.01.103
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eevera, T. & Rajendran, K. & Saradha, S., 2009. "Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions," Renewable Energy, Elsevier, vol. 34(3), pages 762-765.
- Nisar, Jan & Razaq, Rameez & Farooq, Muhammad & Iqbal, Munawar & Khan, Rafaqat Ali & Sayed, Murtaza & Shah, Afzal & Rahman, Inayat ur, 2017. "Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst," Renewable Energy, Elsevier, vol. 101(C), pages 111-119.
- Betiku, Eriola & Taiwo, Abiola Ezekiel, 2015. "Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 74(C), pages 87-94.
- Malhotra, Rashi & Ali, Amjad, 2018. "Lithium-doped ceria supported SBA−15 as mesoporous solid reusable and heterogeneous catalyst for biodiesel production via simultaneous esterification and transesterification of waste cottonseed oil," Renewable Energy, Elsevier, vol. 119(C), pages 32-44.
- Ramezani, K. & Rowshanzamir, S. & Eikani, M.H., 2010. "Castor oil transesterification reaction: A kinetic study and optimization of parameters," Energy, Elsevier, vol. 35(10), pages 4142-4148.
- Vadery, Vinu & Narayanan, Binitha N. & Ramakrishnan, Resmi M. & Cherikkallinmel, Sudha Kochiyil & Sugunan, Sankaran & Narayanan, Divya P. & Sasidharan, Sreenikesh, 2014. "Room temperature production of jatropha biodiesel over coconut husk ash," Energy, Elsevier, vol. 70(C), pages 588-594.
- Chaveanghong, Suwilai & Smith, Siwaporn Meejoo & Smith, Christopher B. & Luengnaruemitchai, Apanee & Boonyuen, Supakorn, 2018. "Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten loaded bovine bone under mild conditions," Renewable Energy, Elsevier, vol. 126(C), pages 156-162.
- Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
- Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
- Rocha, Pablo D. & Oliveira, Leandro S. & Franca, Adriana S., 2019. "Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification," Renewable Energy, Elsevier, vol. 143(C), pages 1710-1716.
- Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
- Tang, Zo-Ee & Lim, Steven & Pang, Yean-Ling & Ong, Hwai-Chyuan & Lee, Keat-Teong, 2018. "Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 235-253.
- Betiku, Eriola & Akintunde, Aramide Mistura & Ojumu, Tunde Victor, 2016. "Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon's plume (Bauhinia monandra) seed oil: A process parameters optimization study," Energy, Elsevier, vol. 103(C), pages 797-806.
- Betiku, Eriola & Omilakin, Oluwasesan Ropo & Ajala, Sheriff Olalekan & Okeleye, Adebisi Aminat & Taiwo, Abiola Ezekiel & Solomon, Bamidele Ogbe, 2014. "Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synth," Energy, Elsevier, vol. 72(C), pages 266-273.
- Esonye, Chizoo & Onukwuli, Okechukwu Dominic & Ofoefule, Akuzuo Uwaoma, 2019. "Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 130(C), pages 61-72.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oraegbunam, Jennifer Chinazor & Oladipo, Babatunde & Falowo, Olayomi Abiodun & Betiku, Eriola, 2020. "Clean sandbox (Hura crepitans) oil methyl esters synthesis: A kinetic and thermodynamic study through pH monitoring approach," Renewable Energy, Elsevier, vol. 160(C), pages 526-537.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
- Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
- Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
- Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
- Mia Gotovuša & Ivan Pucko & Marko Racar & Fabio Faraguna, 2022. "Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties," Energies, MDPI, vol. 15(14), pages 1-21, July.
- Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
- Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
- Miladinović, Marija R. & Krstić, Jugoslav B. & Zdujić, Miodrag V. & Veselinović, Ljiljana M. & Veljović, Djordje N. & Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2022. "Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash," Renewable Energy, Elsevier, vol. 183(C), pages 103-113.
- Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
- di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
- He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
- Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
- Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.
- Zhang-Chun Tang & Yanjun Xia & Qi Xue & Jie Liu, 2018. "A Non-Probabilistic Solution for Uncertainty and Sensitivity Analysis on Techno-Economic Assessments of Biodiesel Production with Interval Uncertainties," Energies, MDPI, vol. 11(3), pages 1-17, March.
- Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
- Niu, Shengli & Zhou, Yan & Li, Hui & Lu, Chunmei & Liu, Li, 2015. "An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation," Energy, Elsevier, vol. 89(C), pages 982-989.
- Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
- Ambat, Indu & Srivastava, Varsha & Iftekhar, Sidra & Haapaniemi, Esa & Sillanpää, Mika, 2020. "Effect of different co-solvents on biodiesel production from various low-cost feedstocks using Sr–Al double oxides," Renewable Energy, Elsevier, vol. 146(C), pages 2158-2169.
- Nath, Biswajit & Kalita, Pranjal & Das, Bipul & Basumatary, Sanjay, 2020. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 295-310.
More about this item
Keywords
Neem seed oil; Bio–based bifunctional catalyst; Simultaneous; Biodiesel; Esterification; Transesterification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:724-735. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.