IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs096014812401752x.html
   My bibliography  Save this article

A circular economy approach to produce low-cost biodiesel using agro-industrial and packing wastes from Mexico: Valorization, homogeneous and heterogeneous reaction routes and product characterization

Author

Listed:
  • Veitía-de-Armas, Liyané
  • Reynel-Ávila, Hilda E.
  • Villalobos-Delgado, Felipe J.
  • Duran-Valle, Carlos J.
  • Adame-Pereira, Marta
  • Bonilla-Petriciolet, Adrián

Abstract

This manuscript describes a circular economy approach to produce low-cost biodiesel using Tetra Pak (TP) and Mexican biomass wastes. Lipids were extracted from non-edible biomass with hexane. Corozo seeds contained 53 wt% lipids, while remaining biomass had <5 wt%. Corozo seed oil was selected to produce biodiesel with both homogeneous and heterogeneous reaction systems. A heterogeneous catalyst was synthesized from TP and its performance was compared with KOH in homogeneous systems using corozo and soybean oils. The best reaction conditions were identified through the Signal/Noise ratio analysis. TP catalyst achieved biodiesel yields of 12.7–98.11 % (corozo) and 87.0–98.4 % (soybean), while KOH systems showed 7.2–96.3 % and 64.6–98.5 %, respectively. These reactive systems were endothermic and fit to pseudo-second order kinetic model. Activation energies for KOH-catalyzed systems were 86.89 (corozo) and 43.72 (soybean) kJ/mol, while TP-catalyzed systems showed 78.31 and 105.68 kJ/mol, respectively. TP catalyst reuse was tested, and the loss of catalytic activity was attributed to active sites poisoning. Biomass, catalysts, and reaction products were characterized (e.g., FTIR, ICP, XRD, EDX-SEM, WDXRF, XPS, basicity and nitrogen adsorption-desorption isotherms). The TP catalyst showed competitive performance with respect to KOH, contributing to a sustainable biodiesel production chain viable for commercial implementation in Mexico.

Suggested Citation

  • Veitía-de-Armas, Liyané & Reynel-Ávila, Hilda E. & Villalobos-Delgado, Felipe J. & Duran-Valle, Carlos J. & Adame-Pereira, Marta & Bonilla-Petriciolet, Adrián, 2024. "A circular economy approach to produce low-cost biodiesel using agro-industrial and packing wastes from Mexico: Valorization, homogeneous and heterogeneous reaction routes and product characterization," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s096014812401752x
    DOI: 10.1016/j.renene.2024.121684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401752X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Liqun & Tajikfar, Abdolreza & Tamjidi, Sajad & Foroutan, Rauf & Esmaeili, Hossein, 2021. "Synthesis of MnFe2O4@graphene oxide catalyst for biodiesel production from waste edible oil," Renewable Energy, Elsevier, vol. 170(C), pages 426-437.
    2. Akhabue, Christopher Ehiaguina & Osa-Benedict, Evidence Osayi & Oyedoh, Eghe Amenze & Otoikhian, Shegun Kevin, 2020. "Development of a bio-based bifunctional catalyst for simultaneous esterification and transesterification of neem seed oil: Modeling and optimization studies," Renewable Energy, Elsevier, vol. 152(C), pages 724-735.
    3. Foroutan, Rauf & Mohammadi, Reza & Razeghi, Jafar & Ramavandi, Bahman, 2021. "Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst," Renewable Energy, Elsevier, vol. 168(C), pages 1207-1216.
    4. Abdullah, Rose Fadzilah & Rashid, Umer & Ibrahim, Mohd Lokman & Hazmi, Balkis & Alharthi, Fahad A. & Nehdi, Imededdine Arbi, 2021. "Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    7. Hu, Ningmeng & Ning, Ping & He, Liang & Guan, Qingqing & Shi, Yuzhen & Miao, Rongrong, 2021. "Near-room temperature transesterification over bifunctional CunO-Bs/SBA-15 catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 170(C), pages 1-11.
    8. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    9. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    10. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Trivedi, Jayati & Bangwal, Dinesh P. & Singh, Lok P. & Atray, Neeraj, 2021. "Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed," Renewable Energy, Elsevier, vol. 170(C), pages 302-314.
    12. Tamim, Rustam & Prasetyoko, Didik & Jovita, Stella & Ni'mah, Yatim Lailun & Nugraha, Reva Edra & Holilah, Holilah & Bahruji, Hasliza & Yusop, Rahimi & Asikin-Mijan, Nurul & Jalil, Aishah Abdul & Harta, 2024. "Low temperature pyrolysis of waste cooking oil using marble waste for bio-jet fuel production," Renewable Energy, Elsevier, vol. 232(C).
    13. Arora, Amit & Singh, Vijay, 2020. "Biodiesel production from engineered sugarcane lipids under uncertain feedstock compositions: Process design and techno-economic analysis," Applied Energy, Elsevier, vol. 280(C).
    14. Battista, Federico & Barampouti, Elli Maria & Mai, Sofia & Bolzonella, David & Malamis, Dimitris & Moustakas, Konstantinos & Loizidou, Maria, 2020. "Added-value molecules recovery and biofuels production from spent coffee grounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    2. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Xia, Shaige & Li, Jian & Chen, Guanyi & Tao, Junyu & Li, Wanqing & Zhu, Guangbin, 2022. "Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil," Renewable Energy, Elsevier, vol. 189(C), pages 421-434.
    4. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    5. Maleki, Basir & Ashraf Talesh, S. Siamak, 2022. "Optimization of ZnO incorporation to αFe2O3 nanoparticles as an efficient catalyst for biodiesel production in a sonoreactor: Application on the CI engine," Renewable Energy, Elsevier, vol. 182(C), pages 43-59.
    6. Basile, Flavia & Pilotti, Lorenzo & Ugolini, Marco & Lozza, Giovanni & Manzolini, Giampaolo, 2022. "Supply chain optimization and GHG emissions in biofuel production from forestry residues in Sweden," Renewable Energy, Elsevier, vol. 196(C), pages 405-421.
    7. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    8. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Anne Shayene Campos de Bomfim & Daniel Magalhães de Oliveira & Eric Walling & Alexandre Babin & Grégory Hersant & Céline Vaneeckhaute & Marie-Josée Dumont & Denis Rodrigue, 2022. "Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment," Waste, MDPI, vol. 1(1), pages 1-19, August.
    10. Timur Kogabayev & Anne Põder & Henrik Barth & Rando Värnik, 2023. "Prospects for Wood Pellet Production in Kazakhstan: A Case Study on Business Model Adjustment," Energies, MDPI, vol. 16(15), pages 1-20, August.
    11. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    12. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    13. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Duan, Xiaoling & Yan, Su & Tie, Xinlong & Lei, Xidan & Liu, Zhiyi & Ma, Zhichao & Wang, Tielin & Feng, Weiliang, 2024. "Bimetallic Ce-Cr doped metal-organic frameworks as a heterogeneous catalyst for highly efficient biodiesel production from insect lipids," Renewable Energy, Elsevier, vol. 224(C).
    15. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    16. Leonel J.R. Nunes & Jorge T. Pereira da Costa & Radu Godina & João C.O. Matias & João P.S. Catalão, 2020. "A Logistics Management System for a Biomass-to-Energy Production Plant Storage Park," Energies, MDPI, vol. 13(20), pages 1-21, October.
    17. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Zhang, Yujiao & Niu, Shengli & Xia, Sunwen & Liu, Sitong & Liu, Jisen, 2023. "One-step conversion of acidified oil to biodiesel by novel bifunctional SrZr1-xFexO3 catalyst," Renewable Energy, Elsevier, vol. 217(C).
    19. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    20. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s096014812401752x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.