IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp1-20.html
   My bibliography  Save this article

Air-cooled fuel cells: Keys to design and build the oxidant/cooling system

Author

Listed:
  • De las Heras, A.
  • Vivas, F.J.
  • Segura, F.
  • Redondo, M.J.
  • Andújar, J.M.

Abstract

In the field of energy, hydrogen as an energetic vector is becoming increasingly important. Specifically, fuel cells powered by hydrogen are becoming an alternative in automotive and other fields because of their ability to produce electricity without any pollution. Therefore, at this time there is a very active research field. A fuel cell can be described as a scale down industrial plant that consists of different subsystems whose purpose is to make the stack works properly. Air Cooled Polymer Electrolyte Fuel Cells (AC-PEFC) are receiving special attention due to their potential to integrate the oxidant and cooling subsystems into one, which in term gives the fuel cells their capability to reduce its weight, volume, cost and control complexity. In these fuel cells, the Oxidant/Cooling subsystem is of crucial importance and along with three others (Fuel, Electrical and Control subsystems) make up the Balance of Plant (BoP), which together with the stack comprise the full fuel cell system. The aim of this paper is to present a comprehensive experimental study of an AC-PEFC paying particular attention to the Oxidant/Cooling subsystem configuration. According to the scientific literature, this subsystem has not received the same attention as other subsystems like the Fuel and Control subsystems. However, a suitable design and size is critical for the proper functioning of the stack. The analysis carried out in this paper tries to solve some problems that can appear if the design of the Oxidant/Cooling subsystem has not been optimized. These problems are related to important aspects such as the performance and the efficiency of the whole system and temperature distribution over the stack.

Suggested Citation

  • De las Heras, A. & Vivas, F.J. & Segura, F. & Redondo, M.J. & Andújar, J.M., 2018. "Air-cooled fuel cells: Keys to design and build the oxidant/cooling system," Renewable Energy, Elsevier, vol. 125(C), pages 1-20.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:1-20
    DOI: 10.1016/j.renene.2018.02.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Segura, Francisca & Andújar, José Manuel, 2012. "Power management based on sliding control applied to fuel cell systems: A further step towards the hybrid control concept," Applied Energy, Elsevier, vol. 99(C), pages 213-225.
    3. Gomez, Alberto & Raj, Abhishek & Sasmito, Agus P. & Shamim, Tariq, 2014. "Effect of operating parameters on the transient performance of a polymer electrolyte membrane fuel cell stack with a dead-end anode," Applied Energy, Elsevier, vol. 130(C), pages 692-701.
    4. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.
    5. Samsun, Remzi Can & Pasel, Joachim & Janßen, Holger & Lehnert, Werner & Peters, Ralf & Stolten, Detlef, 2014. "Design and test of a 5kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene," Applied Energy, Elsevier, vol. 114(C), pages 238-249.
    6. Wu, Qixing & Li, Haiyang & Yuan, Wenxiang & Luo, Zhongkuan & Wang, Fang & Sun, Hongyuan & Zhao, Xuxin & Fu, Huide, 2015. "Performance evaluation of an air-breathing high-temperature proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 160(C), pages 146-152.
    7. Sasmito, A.P. & Birgersson, E. & Lum, K.W. & Mujumdar, A.S., 2012. "Fan selection and stack design for open-cathode polymer electrolyte fuel cell stacks," Renewable Energy, Elsevier, vol. 37(1), pages 325-332.
    8. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    9. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Xingying & Jian, Qifei, 2023. "Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 216(C).
    2. Wang, Zhiming & Wang, Xueye & Chen, Zhichao & Liao, Zhirong & Xu, Chao & Du, Xiaoze, 2021. "Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling," Renewable Energy, Elsevier, vol. 180(C), pages 1333-1343.
    3. José-Luis Casteleiro-Roca & Francisco José Vivas & Francisca Segura & Antonio Javier Barragán & Jose Luis Calvo-Rolle & José Manuel Andújar, 2020. "Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    4. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    5. Alegre, Cinthia & Lozano, Antonio & Manso, Ángel Pérez & Álvarez-Manuel, Laura & Marzo, Florencio Fernández & Barreras, Félix, 2019. "Single cell induced starvation in a high temperature proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 250(C), pages 1176-1189.
    6. José-Luis Casteleiro-Roca & Antonio Javier Barragán & Francisca Segura & José Luis Calvo-Rolle & José Manuel Andújar, 2019. "Fuel Cell Output Current Prediction with a Hybrid Intelligent System," Complexity, Hindawi, vol. 2019, pages 1-10, February.
    7. Zhang, Bo & Lin, Fei & Zhang, Caizhi & Liao, Ruiyue & Wang, Ya-Xiong, 2020. "Design and implementation of model predictive control for an open-cathode fuel cell thermal management system," Renewable Energy, Elsevier, vol. 154(C), pages 1014-1024.
    8. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    9. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.
    10. Zhao, Chen & Xing, Shuang & Liu, Wei & Chen, Ming & Wang, Haijiang, 2021. "Performance and thermal optimization of different length-width ratio for air-cooled open-cathode fuel cell," Renewable Energy, Elsevier, vol. 178(C), pages 1250-1260.
    11. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Song, Ke & Fan, Zhixin & Hu, Xiao & Ding, Yuhang & Li, Haiyang & Xu, Hongjie & Zhang, Tong, 2021. "Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells," Energy, Elsevier, vol. 223(C).
    13. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purnima, P. & Jayanti, S., 2017. "Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation," Applied Energy, Elsevier, vol. 199(C), pages 169-179.
    2. Andújar, J.M. & Segura, F. & Isorna, F. & Calderón, A.J., 2018. "Comprehensive diagnosis methodology for faults detection and identification, and performance improvement of Air-Cooled Polymer Electrolyte Fuel Cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 193-207.
    3. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    4. Soopee, Asif & Sasmito, Agus P. & Shamim, Tariq, 2019. "Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 233, pages 300-311.
    5. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    6. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    7. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    8. Li, Yan & Shi, Yan & Mehio, Nada & Tan, Mingsheng & Wang, Zhiyong & Hu, Xiaohong & Chen, George Z. & Dai, Sheng & Jin, Xianbo, 2016. "More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid," Applied Energy, Elsevier, vol. 175(C), pages 451-458.
    9. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    10. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    11. Song, Ke & Fan, Zhixin & Hu, Xiao & Ding, Yuhang & Li, Haiyang & Xu, Hongjie & Zhang, Tong, 2021. "Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells," Energy, Elsevier, vol. 223(C).
    12. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    13. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    14. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Air-breathing polymer electrolyte fuel cells: A review," Renewable Energy, Elsevier, vol. 213(C), pages 86-108.
    15. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Pregelj, Boštjan & Vrečko, Darko & Petrovčič, Janko & Jovan, Vladimir & Dolanc, Gregor, 2015. "A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application," Applied Energy, Elsevier, vol. 137(C), pages 64-76.
    17. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    18. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    19. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    20. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.