IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10566-d463830.html
   My bibliography  Save this article

Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy

Author

Listed:
  • José-Luis Casteleiro-Roca

    (Department of Industrial Engineering, University of A Coruña, CTC, CITIC, 15405 Ferrol, Spain
    These authors contributed equally to this work.)

  • Francisco José Vivas

    (Department of Electronic Engineering, Computer Systems and Automatic, Campus de El Carmen, University of Huelva, 21071 Huelva, Spain
    These authors contributed equally to this work.)

  • Francisca Segura

    (Department of Electronic Engineering, Computer Systems and Automatic, Campus de El Carmen, University of Huelva, 21071 Huelva, Spain
    These authors contributed equally to this work.)

  • Antonio Javier Barragán

    (Department of Electronic Engineering, Computer Systems and Automatic, Campus de El Carmen, University of Huelva, 21071 Huelva, Spain
    These authors contributed equally to this work.)

  • Jose Luis Calvo-Rolle

    (Department of Industrial Engineering, University of A Coruña, CTC, CITIC, 15405 Ferrol, Spain
    These authors contributed equally to this work.)

  • José Manuel Andújar

    (Department of Electronic Engineering, Computer Systems and Automatic, Campus de El Carmen, University of Huelva, 21071 Huelva, Spain
    These authors contributed equally to this work.)

Abstract

This work deals with the prediction of variables for a hydrogen energy storage system integrated into a microgrid. Due to the fact that this kind of system has a nonlinear behaviour, the use of traditional techniques is not accurate enough to generate good models of the system under study. Then, a hybrid intelligent system, based on clustering and regression techniques, has been developed and implemented to predict the power, the hydrogen level and the hydrogen system degradation. In this research, a hybrid intelligent model was created and validated over a dataset from a lab-size migrogrid. The achieved results show a better performance than other well-known classical regression methods, allowing us to predict the hydrogen consumption/generation with a mean absolute error of 0.63% with the test dataset respect to the maximum power of the system.

Suggested Citation

  • José-Luis Casteleiro-Roca & Francisco José Vivas & Francisca Segura & Antonio Javier Barragán & Jose Luis Calvo-Rolle & José Manuel Andújar, 2020. "Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10566-:d:463830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De las Heras, A. & Vivas, F.J. & Segura, F. & Redondo, M.J. & Andújar, J.M., 2018. "Air-cooled fuel cells: Keys to design and build the oxidant/cooling system," Renewable Energy, Elsevier, vol. 125(C), pages 1-20.
    2. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    3. Paska, Józef & Biczel, Piotr & Kłos, Mariusz, 2009. "Hybrid power systems – An effective way of utilising primary energy sources," Renewable Energy, Elsevier, vol. 34(11), pages 2414-2421.
    4. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    5. De las Heras, A. & Vivas, F.J. & Segura, F. & Andújar, J.M., 2018. "From the cell to the stack. A chronological walk through the techniques to manufacture the PEFCs core," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 29-45.
    6. Moreira, Marcos V. & da Silva, Gisele E., 2009. "A practical model for evaluating the performance of proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 34(7), pages 1734-1741.
    7. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    8. José-Luis Casteleiro-Roca & Antonio Javier Barragán & Francisca Segura & José Luis Calvo-Rolle & José Manuel Andújar, 2019. "Fuel Cell Output Current Prediction with a Hybrid Intelligent System," Complexity, Hindawi, vol. 2019, pages 1-10, February.
    9. Andújar, J.M. & Segura, F., 2009. "Fuel cells: History and updating. A walk along two centuries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2309-2322, December.
    10. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2017. "Modelling and simulation of an alkaline electrolyser cell," Energy, Elsevier, vol. 138(C), pages 316-331.
    11. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zong, Yi & Zhou, Keliang & Fu, Zhichao, 2020. "Control oriented data driven linear parameter varying model for proton exchange membrane fuel cell systems," Applied Energy, Elsevier, vol. 277(C).
    12. Nagy, Karoly & Körmendi, Krisztina, 2012. "Use of renewable energy sources in light of the “New Energy Strategy for Europe 2011–2020”," Applied Energy, Elsevier, vol. 96(C), pages 393-399.
    13. Hein, Walter & Wilson, Clevo & Lee, Boon & Rajapaksa, Darshana & de Moel, Hans & Athukorala, Wasantha & Managi, Shunsuke, 2019. "Climate change and natural disasters: Government mitigation activities and public property demand response," Land Use Policy, Elsevier, vol. 82(C), pages 436-443.
    14. Antonio José Calderón & Francisco José Vivas & Francisca Segura & José Manuel Andújar, 2020. "Integration of a Multi-Stack Fuel Cell System in Microgrids: A Solution Based on Model Predictive Control," Energies, MDPI, vol. 13(18), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José-Luis Casteleiro-Roca & Antonio Javier Barragán & Francisca Segura & José Luis Calvo-Rolle & José Manuel Andújar, 2019. "Fuel Cell Output Current Prediction with a Hybrid Intelligent System," Complexity, Hindawi, vol. 2019, pages 1-10, February.
    2. Andújar, J.M. & Segura, F. & Durán, E. & Rentería, L.A., 2011. "Optimal interface based on power electronics in distributed generation systems for fuel cells," Renewable Energy, Elsevier, vol. 36(11), pages 2759-2770.
    3. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    4. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    5. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    6. Candra Saigustia & Sylwester Robak, 2021. "Review of Potential Energy Storage in Abandoned Mines in Poland," Energies, MDPI, vol. 14(19), pages 1-16, October.
    7. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    8. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    9. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    10. Montero-Sousa, Juan Aurelio & Aláiz-Moretón, Héctor & Quintián, Héctor & González-Ayuso, Tomás & Novais, Paulo & Calvo-Rolle, José Luis, 2020. "Hydrogen consumption prediction of a fuel cell based system with a hybrid intelligent approach," Energy, Elsevier, vol. 205(C).
    11. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    12. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    13. Raza, Rizwan & Akram, Nadeem & Javed, Muhammad Sufyan & Rafique, Asia & Ullah, Kaleem & Ali, Amjad & Saleem, M. & Ahmed, Riaz, 2016. "Fuel cell technology for sustainable development in Pakistan – An over-view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 450-461.
    14. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    15. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    16. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
    17. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    18. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    19. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    20. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10566-:d:463830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.