IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v197y2017icp163-168.html
   My bibliography  Save this article

Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature

Author

Listed:
  • Liu, Guicheng
  • Li, Xinyang
  • Wang, Hui
  • Liu, Xiuying
  • Chen, Ming
  • Woo, Jae Young
  • Kim, Ji Young
  • Wang, Xindong
  • Lee, Joong Kee

Abstract

To understand the effect mechanisms of long-time running and high operation temperature on performance of the direct methanol fuel cell (DMFC) more clearly and directly, in this paper, a new design of 3-electrode system with a solution-type salt bridge has been developed to distinguish the integral polarization into anodic and cathodic polarizations at various temperatures and explore the attenuation mechanism by in situ monitoring the potential of anode during long-time running process at 80°C, for the first time. The results indicate that the optimized 3-electrode system consists of a standard calomel electrode (SCE) and a solution-type salt bridge placed in the anode hole filled by 0.5molL−1 H2SO4 solution. By utilization of the 3-electrode system, the effect mechanisms of the running temperature and time on electrochemical parameters of the DMFC have been found: (1) The increasing operation temperature improves cathodic performance more significantly than that of anode; (2) the attenuation of fuel cell performance mainly comes from that of anode during the 20-h running test at 80°C, resulting from the sharp drop of electrochemical active surface area of anode. More important, the new 3-electrode system has simplified the detection equipment and reduced the operating difficulty in a practical application for DMFCs, resulting in its portability.

Suggested Citation

  • Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
  • Handle: RePEc:eee:appene:v:197:y:2017:i:c:p:163-168
    DOI: 10.1016/j.apenergy.2017.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917304117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
    2. Seo, Sang Hern & Lee, Chang Sik, 2010. "A study on the overall efficiency of direct methanol fuel cell by methanol crossover current," Applied Energy, Elsevier, vol. 87(8), pages 2597-2604, August.
    3. Liu, Guicheng & Ding, Xianan & Zhou, Hongwei & Chen, Ming & Wang, Manxiang & Zhao, Zhenxuan & Yin, Zhuang & Wang, Xindong, 2015. "Structure optimization of cathode microporous layer for direct methanol fuel cells," Applied Energy, Elsevier, vol. 147(C), pages 396-401.
    4. Gomez, Alberto & Raj, Abhishek & Sasmito, Agus P. & Shamim, Tariq, 2014. "Effect of operating parameters on the transient performance of a polymer electrolyte membrane fuel cell stack with a dead-end anode," Applied Energy, Elsevier, vol. 130(C), pages 692-701.
    5. Mehmood, Asad & An, Myung-Gi & Ha, Heung Yong, 2014. "Physical degradation of cathode catalyst layer: A major contributor to accelerated water flooding in long-term operation of DMFCs," Applied Energy, Elsevier, vol. 129(C), pages 346-353.
    6. An, Myung-Gi & Mehmood, Asad & Ha, Heung Yong, 2014. "Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures," Applied Energy, Elsevier, vol. 129(C), pages 104-111.
    7. Wang, Zhigang & Zhang, Xuelin & Nie, Li & Zhang, Yufeng & Liu, Xiaowei, 2014. "Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment," Applied Energy, Elsevier, vol. 126(C), pages 107-112.
    8. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation," Applied Energy, Elsevier, vol. 135(C), pages 364-372.
    9. Dutta, Kingshuk & Das, Suparna & Kumar, Piyush & Kundu, Patit Paban, 2014. "Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP," Applied Energy, Elsevier, vol. 118(C), pages 183-191.
    10. Yuan, Wei & Zhang, Zhaochun & Hu, Jinyi & Zhou, Bo & Tang, Yong, 2014. "Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation," Applied Energy, Elsevier, vol. 136(C), pages 143-149.
    11. Karim, N.A. & Kamarudin, S.K., 2013. "An overview on non-platinum cathode catalysts for direct methanol fuel cell," Applied Energy, Elsevier, vol. 103(C), pages 212-220.
    12. Mehmood, Asad & Ha, Heung Yong, 2014. "Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method," Applied Energy, Elsevier, vol. 114(C), pages 164-171.
    13. An, Myung-Gi & Mehmood, Asad & Ha, Heung Yong, 2014. "A sensor-less methanol concentration control system based on feedback from the stack temperature," Applied Energy, Elsevier, vol. 131(C), pages 257-266.
    14. Wu, Q.X. & Zhao, T.S. & Chen, R. & An, L., 2013. "A sandwich structured membrane for direct methanol fuel cells operating with neat methanol," Applied Energy, Elsevier, vol. 106(C), pages 301-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qinwen & Gao, Bin & Cheng, Qiang & Xiao, Gang & Meng, Min, 2022. "Adaptive control strategy for power output stability in long-time operation of fuel cells," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    2. Chen, Qing-Yun & Fu, Rong & Fang, Xiao-Wen & Cai, Wen-Fang & Wang, Yun-Hai & Cheng, Shao-An, 2015. "Cr-methanol fuel cell for efficient Cr(VI) removal and high power production," Applied Energy, Elsevier, vol. 138(C), pages 31-35.
    3. Yuan, Wei & Wang, Aoyu & Yan, Zhiguo & Tan, Zhenhao & Tang, Yong & Xia, Hongrong, 2016. "Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields," Applied Energy, Elsevier, vol. 179(C), pages 85-98.
    4. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation," Applied Energy, Elsevier, vol. 135(C), pages 364-372.
    5. Yan, X.H. & Zhao, T.S. & An, L. & Zhao, G. & Zeng, L., 2015. "A crack-free and super-hydrophobic cathode micro-porous layer for direct methanol fuel cells," Applied Energy, Elsevier, vol. 138(C), pages 331-336.
    6. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    7. Yang, Qinwen & Xiao, Gang & Li, Lexi & Che, Mengjie & Hu, Xu-Qu & Meng, Min, 2021. "Collaborative design of multi-type parameters for design and operational stage matching in fuel cells," Renewable Energy, Elsevier, vol. 175(C), pages 1101-1110.
    8. Mehmood, Asad & An, Myung-Gi & Ha, Heung Yong, 2014. "Physical degradation of cathode catalyst layer: A major contributor to accelerated water flooding in long-term operation of DMFCs," Applied Energy, Elsevier, vol. 129(C), pages 346-353.
    9. An, Myung-Gi & Mehmood, Asad & Ha, Heung Yong, 2014. "Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures," Applied Energy, Elsevier, vol. 129(C), pages 104-111.
    10. Kumar, Piyush & Dutta, Kingshuk & Das, Suparna & Kundu, Patit Paban, 2014. "Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC," Applied Energy, Elsevier, vol. 123(C), pages 66-74.
    11. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    12. Li, Yang & Zhang, Xuelin & Yuan, Weijian & Zhang, Yufeng & Liu, Xiaowei, 2018. "A novel CO2 gas removal design for a micro passive direct methanol fuel cell," Energy, Elsevier, vol. 157(C), pages 599-607.
    13. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
    14. Mehmood, Asad & Ha, Heung Yong, 2014. "Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method," Applied Energy, Elsevier, vol. 114(C), pages 164-171.
    15. Wang, Zhigang & Zhang, Xuelin & Nie, Li & Zhang, Yufeng & Liu, Xiaowei, 2014. "Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment," Applied Energy, Elsevier, vol. 126(C), pages 107-112.
    16. Chen, Fengxiang & Chi, Xuncheng & Wei, Wei & Mo, Tiande & Li, Yu, 2023. "Model-based observer for direct methanol fuel cell concentration estimation by using second-order sliding-mode algorithm," Energy, Elsevier, vol. 263(PD).
    17. Braz, B.A. & Oliveira, V.B. & Pinto, A.M.F.R., 2020. "Optimization of a passive direct methanol fuel cell with different current collector materials," Energy, Elsevier, vol. 208(C).
    18. Munjewar, Seema S. & Thombre, Shashikant B. & Mallick, Ranjan K., 2017. "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1087-1104.
    19. Jiang, Jinghui & Li, Yinshi & Liang, Jiarong & Yang, Weiwei & Li, Xianglin, 2019. "Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Chi, Xuncheng & Chen, Fengxiang & Mo, Tiande & Li, Yu & Wei, Wei, 2024. "Improve methanol efficiency for direct methanol fuel cell system via investigation and control of optimal operating methanol concentration," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:197:y:2017:i:c:p:163-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.