IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v37y2012i1p325-332.html
   My bibliography  Save this article

Fan selection and stack design for open-cathode polymer electrolyte fuel cell stacks

Author

Listed:
  • Sasmito, A.P.
  • Birgersson, E.
  • Lum, K.W.
  • Mujumdar, A.S.

Abstract

The design of open-cathode polymer electrolyte fuel cell (PEFC) stacks with forced-air convection from one or several fans requires careful consideration of the characteristic curves of the stack and the fan(s). Ideally, the intersection – the operating point – between the stack and the fan characteristic curves should be located in the optimal operating region of the fan; and be sufficiently far away from any unstable region. In this paper, the effect of various fan and stack configurations, operating conditions and their impact on the fan and system characteristic curves as well as stack performance are investigated with a model considering two-phase flow and conservation of mass, momentum, species, charge, and energy in the PEFC stack and ambient; the fans are treated as interface conditions. The results indicate that the fan power rating, fan type, single fan or fans in series, fuel cell length, and separate air-coolant channels have a significant impact on the operating point and resulting stack performance – these factors therefore have to be accounted for when designing the PEFC stack and selecting fans. Furthermore, the results suggest that the stack characteristic curve can be secured by straight-forward air-flow simulations instead of solving a detailed, mechanistic fuel-cell model, allowing for more efficient model-based design studies of fans interacting with a PEFC stack.

Suggested Citation

  • Sasmito, A.P. & Birgersson, E. & Lum, K.W. & Mujumdar, A.S., 2012. "Fan selection and stack design for open-cathode polymer electrolyte fuel cell stacks," Renewable Energy, Elsevier, vol. 37(1), pages 325-332.
  • Handle: RePEc:eee:renene:v:37:y:2012:i:1:p:325-332
    DOI: 10.1016/j.renene.2011.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111003740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De las Heras, A. & Vivas, F.J. & Segura, F. & Redondo, M.J. & Andújar, J.M., 2018. "Air-cooled fuel cells: Keys to design and build the oxidant/cooling system," Renewable Energy, Elsevier, vol. 125(C), pages 1-20.
    2. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Wasselynck, Guillaume & Auvity, Bruno & Olivier, Jean-Christophe & Trichet, Didier & Josset, Christophe & Maindru, Philippe, 2012. "Design and testing of a fuel cell powertrain with energy constraints," Energy, Elsevier, vol. 38(1), pages 414-424.
    4. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    5. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    6. Torsten Berning & Søren Knudsen Kær, 2020. "A Thermodynamic Analysis of an Air-Cooled Proton Exchange Membrane Fuel Cell Operated in Different Climate Regions," Energies, MDPI, vol. 13(10), pages 1-14, May.
    7. Song, Ke & Fan, Zhixin & Hu, Xiao & Ding, Yuhang & Li, Haiyang & Xu, Hongjie & Zhang, Tong, 2021. "Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells," Energy, Elsevier, vol. 223(C).
    8. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Sasmito, Agus P. & Kurnia, Jundika C. & Shamim, Tariq & Mujumdar, Arun S., 2017. "Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method," Applied Energy, Elsevier, vol. 185(P2), pages 1225-1232.
    10. Ling, C.Y. & Cao, H. & Chen, Y. & Han, M. & Birgersson, E., 2016. "Compact open cathode feed system for PEMFCs," Applied Energy, Elsevier, vol. 164(C), pages 670-675.
    11. Islam, M.R. & Shabani, B. & Rosengarten, G. & Andrews, J., 2015. "The potential of using nanofluids in PEM fuel cell cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 523-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:37:y:2012:i:1:p:325-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.