IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp490-500.html
   My bibliography  Save this article

Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production

Author

Listed:
  • Singh, Yengkhom Disco
  • Mahanta, Pinakeswar
  • Bora, Utpal

Abstract

We report here the characterization of five biomass samples (Impereta cylindrica, Eragrostis airoides, Typha angustifolia L., Arundinella khasiana Nees ex Steud, and Echinochloa stagnina (Retz.) P. Beauv) based on the proximate, ultimate and compositional analysis. The biomasses were examined physico-chemically and characterized to understand their compositional and structural properties. The moisture content was found to be highest in Typha angustifolia (13.951%) and lowest in Eragrostis airoides (8.275%). Ash content was seen to be maximum in Arundinella khasiana (8.12%) and minimum in Eragrostis airoides (3.660%). Derivative Thermogravimetric (DTG) peak was observed below 120 °C indicating the loss of water molecules from the biomass. Cellulose degradation occured between 350 °C to 500 °C. The maximum carbon content was visible in Typha angustifolia (52.895%) and minimum in Eragrostis airoides (41.024%). The FTIR spectra showed a range of peaks such as 3450 cm−1, 2860 cm−1, 1668 cm−1, 1175 cm−1, 1097 cm−1, 7872 cm−1, 625 cm−1, 554 cm−1 etc. The cellulose content was found maximum in Eragrostis airoides (43.17%) and minimum in Echinochloa stagnina (24.90%). The results demonstrate that the collected lignocellulosic biomass could be potential candidate for bioethanol production.

Suggested Citation

  • Singh, Yengkhom Disco & Mahanta, Pinakeswar & Bora, Utpal, 2017. "Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production," Renewable Energy, Elsevier, vol. 103(C), pages 490-500.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:490-500
    DOI: 10.1016/j.renene.2016.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian Kang & Tianwei Tan, 2016. "Exergy and CO 2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production," Sustainability, MDPI, vol. 8(1), pages 1-11, January.
    2. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    3. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kongto, Pumin & Palamanit, Arkom & Chaiprapat, Sumate & Tippayawong, Nakorn & Khempila, Jarunee & Lam, Su Shiung & Hayat, Asif & Yuh Yek, Peter Nai, 2023. "Physicochemical changes and energy properties of torrefied rubberwood biomass produced by different scale moving bed reactors," Renewable Energy, Elsevier, vol. 219(P2).
    2. Sun Yong Park & Kwang Cheol Oh & Seok Jun Kim & La Hoon Cho & Young Kwang Jeon & DaeHyun Kim, 2023. "Development of a Biomass Component Prediction Model Based on Elemental and Proximate Analyses," Energies, MDPI, vol. 16(14), pages 1-17, July.
    3. Yusuf, Abdulfatah Abdu & Inambao, Freddie L., 2020. "Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Marisutti, Estela & Viegas, Bruno Marques & Rodrigues, Naira Poerner & Ayub, Marco Antônio Záchia & Rossi, Daniele Misturini, 2024. "Characterization and treatments in soybean hull for 2,3-Butanediol production using Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1," Renewable Energy, Elsevier, vol. 224(C).
    5. Ahmed, Ashfaq & Abu Bakar, Muhammad S. & Azad, Abul K. & Sukri, Rahayu S. & Mahlia, Teuku Meurah Indra, 2018. "Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3060-3076.
    6. Piñón-Muñiz, M.I. & Ramos-Sánchez, V.H. & Gutiérrez-Méndez, N. & Pérez-Vega, S.B. & Sacramento-Rivero, J.C. & Vargas-Consuelos, C.I. & Martinez, F.M. & Graeve, O.A. & Orozco-Mena, R.E. & Quintero-Ramo, 2023. "Potential use of Sotol bagasse (Dasylirion spp.) as a new biomass source for liquid biofuels production: Comprehensive characterization and ABE fermentation," Renewable Energy, Elsevier, vol. 212(C), pages 632-643.
    7. Hellem Victoria Ribeiro dos Santos & Paulo Sérgio Scalize & Francisco Javier Cuba Teran & Renata Medici Frayne Cuba, 2023. "Fluoride Removal from Aqueous Medium Using Biochar Produced from Coffee Ground," Resources, MDPI, vol. 12(7), pages 1-20, July.
    8. Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
    9. Hasan, Md. Yeasir & Monir, Minhaj Uddin & Ahmed, Mohammad Tofayal & Aziz, Azrina Abd & Shovon, Shaik Muntasir & Ahamed Akash, Faysal & Hossain Khan, Mohammad Forrukh & Faruque, Md. Jamal & Islam Rifat, 2022. "Sustainable energy sources in Bangladesh: A review on present and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Anabel Fernandez & Daniela Zalazar-García & Carla Lorenzo-Doncel & Diego Mauricio Yepes Maya & Electo Eduardo Silva Lora & Rosa Rodriguez & Germán Mazza, 2024. "Kinetic Modeling of Co-Pyrogasification in Municipal Solid Waste (MSW) Management: Towards Sustainable Resource Recovery and Energy Generation," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
    11. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Sara E. AbdElhafez & Tarek Taha & Ahmed E. Mansy & Eman El-Desouky & Mohamed A. Abu-Saied & Khloud Eltaher & Ali Hamdy & Gomaa El Fawal & Amr Gamal & Aly M. Hashim & Abdallah S. Elgharbawy & Mona M. A, 2022. "Experimental Optimization with the Emphasis on Techno-Economic Analysis of Production and Purification of High Value-Added Bioethanol from Sustainable Corn Stover," Energies, MDPI, vol. 15(17), pages 1-33, August.
    13. Olatunji, Obafemi O. & Akinlabi, Stephen & Madushele, Nkosinathi & Adedeji, Paul A., 2020. "Property-based biomass feedstock grading using k-Nearest Neighbour technique," Energy, Elsevier, vol. 190(C).
    14. Chapela, S. & Porteiro, J. & Garabatos, M. & Patiño, D. & Gómez, M.A. & Míguez, J.L., 2019. "CFD study of fouling phenomena in small-scale biomass boilers: Experimental validation with two different boilers," Renewable Energy, Elsevier, vol. 140(C), pages 552-562.
    15. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    16. Joseph Yankyera Kusi & Florian Empl & Ralf Müller & Stefan Pelz & Jens Poetsch & Gregor Sailer & Rainer Kirchhof & Nana Sarfo Agyemang Derkyi & Francis Attiogbe & Sarah Elikplim Siabi, 2024. "Evaluation of Energetic Potential of Slaughterhouse Waste and Its Press Water Obtained by Pressure-Induced Separation via Anaerobic Digestion," Energies, MDPI, vol. 17(22), pages 1-20, November.
    17. Ashfaq Ahmed & Muhammad S. Abu Bakar & Abdul Razzaq & Syarif Hidayat & Farrukh Jamil & Muhammad Nadeem Amin & Rahayu S. Sukri & Noor S. Shah & Young-Kwon Park, 2021. "Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion," Sustainability, MDPI, vol. 13(9), pages 1-13, May.
    18. Gianluca Cavalaglio & Franco Cotana & Andrea Nicolini & Valentina Coccia & Alessandro Petrozzi & Alessandro Formica & Alessandro Bertini, 2020. "Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    19. Sahoo, Abhisek & Saini, Komal & Negi, Shweta & Kumar, Jitendra & Pant, Kamal K. & Bhaskar, Thallada, 2022. "Inspecting the bioenergy potential of noxious Vachellia nilotica weed via pyrolysis: Thermo-kinetic study, neural network modeling and response surface optimization," Renewable Energy, Elsevier, vol. 185(C), pages 386-402.
    20. Vinícius P. Shibukawa & Lucas Ramos & Mónica M. Cruz-Santos & Carina A. Prado & Fanny M. Jofre & Gabriel L. de Arruda & Silvio S. da Silva & Solange I. Mussatto & Júlio C. dos Santos, 2023. "Impact of Product Diversification on the Economic Sustainability of Second-Generation Ethanol Biorefineries: A Critical Review," Energies, MDPI, vol. 16(17), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    2. Shadangi, Krushna Prasad & Mohanty, Kaustubha, 2014. "Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis," Renewable Energy, Elsevier, vol. 63(C), pages 337-344.
    3. Isah Y. Mohammed & Yousif A. Abakr & Feroz K. Kazi & Suzana Yusup & Ibraheem Alshareef & Soh A. Chin, 2015. "Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion," Energies, MDPI, vol. 8(5), pages 1-15, April.
    4. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    5. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    6. Salkuyeh, Yaser Khojasteh & Elkamel, Ali & Thé, Jesse & Fowler, Michael, 2016. "Development and techno-economic analysis of an integrated petroleum coke, biomass, and natural gas polygeneration process," Energy, Elsevier, vol. 113(C), pages 861-874.
    7. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    8. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    9. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    10. Farahani, Moein Farmahini & Akbari, Shahin & Sadeghi, Sadegh & Bidabadi, Mehdi & Moghadam, Mohammadamir Ghasemian & Xu, Fei, 2020. "Analytical study of transient counter-flow non-premixed combustion of biomass in presence of thermal radiation," Renewable Energy, Elsevier, vol. 159(C), pages 312-325.
    11. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    12. Huang, Lei & Chen, Yucheng & Liu, Geng & Li, Shengnan & Liu, Yun & Gao, Xu, 2015. "Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis," Energy, Elsevier, vol. 87(C), pages 31-40.
    13. He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
    14. Pulla Rose Havilah & Pankaj Kumar Sharma & Amit Kumar Sharma, 2021. "Characterization, thermal and kinetic analysis of Pinusroxburghii," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8872-8894, June.
    15. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Zhang, Qi & Zhang, Pengfei & Pei, Z.J. & Wang, Donghai, 2013. "Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature," Renewable Energy, Elsevier, vol. 60(C), pages 127-136.
    17. Yusuf, Abdulfatah Abdu & Inambao, Freddie L., 2020. "Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Grigiante, M. & Brighenti, M. & Antolini, D., 2016. "A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods," Renewable Energy, Elsevier, vol. 99(C), pages 1318-1326.
    19. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    20. Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:490-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.