Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kongto, Pumin & Palamanit, Arkom & Chaiprapat, Sumate & Tippayawong, Nakorn, 2021. "Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications," Renewable Energy, Elsevier, vol. 170(C), pages 703-713.
- Sibiya, N.T. & Oboirien, B. & Lanzini, A. & Gandiglio, M. & Ferrero, D. & Papurello, D. & Bada, S.O., 2021. "Effect of different pre-treatment methods on gasification properties of grass biomass," Renewable Energy, Elsevier, vol. 170(C), pages 875-883.
- Ivanovski, Maja & Goricanec, Darko & Krope, Jurij & Urbancl, Danijela, 2022. "Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production," Energy, Elsevier, vol. 240(C).
- Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
- Catarina Viegas & Catarina Nobre & Ricardo Correia & Luísa Gouveia & Margarida Gonçalves, 2021. "Optimization of Biochar Production by Co-Torrefaction of Microalgae and Lignocellulosic Biomass Using Response Surface Methodology," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Zdzislawa Romanowska-Duda & Szymon Szufa & Mieczysław Grzesik & Krzysztof Piotrowski & Regina Janas, 2021. "The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow ( Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Bio," Energies, MDPI, vol. 14(17), pages 1-21, August.
- Potnuri, Ramesh & Suriapparao, Dadi V. & Sankar Rao, Chinta & Sridevi, Veluru & Kumar, Abhishankar, 2022. "Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 798-809.
- Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
- Shih-Wei Yen & Wei-Hsin Chen & Jo-Shu Chang & Chun-Fong Eng & Salman Raza Naqvi & Pau Loke Show, 2021. "Torrefaction Thermogravimetric Analysis and Kinetics of Sorghum Distilled Residue for Sustainable Fuel Production," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
- Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.
- Aguado, Roque & Cuevas, Manuel & Pérez-Villarejo, Luis & Martínez-Cartas, Ma Lourdes & Sánchez, Sebastián, 2020. "Upgrading almond-tree pruning as a biofuel via wet torrefaction," Renewable Energy, Elsevier, vol. 145(C), pages 2091-2100.
- Chen, Wei-Hsin & Aniza, Ria & Arpia, Arjay A. & Lo, Hsiu-Ju & Hoang, Anh Tuan & Goodarzi, Vahabodin & Gao, Jianbing, 2022. "A comparative analysis of biomass torrefaction severity index prediction from machine learning," Applied Energy, Elsevier, vol. 324(C).
- Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
- Brighenti, M. & Grigiante, M. & Antolini, D. & Di Maggio, R., 2017. "An innovative kinetic model dedicated to mild degradation (torrefaction) of biomasses," Applied Energy, Elsevier, vol. 206(C), pages 475-486.
- Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind & Trinh, Thuat T., 2015. "Effects of wet torrefaction on pyrolysis of woody biomass fuels," Energy, Elsevier, vol. 88(C), pages 443-456.
- Zhao, Zhong & Feng, Shuo & Zhao, Yaying & Wang, Zhuozhi & Ma, Jiao & Xu, Lianfei & Yang, Jiancheng & Shen, Boxiong, 2022. "Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions," Renewable Energy, Elsevier, vol. 189(C), pages 1234-1248.
- Chen, Wei-Hsin & Lo, Hsiu-Ju & Aniza, Ria & Lin, Bo-Jhih & Park, Young-Kwon & Kwon, Eilhann E. & Sheen, Herng-Kuang & Grafilo, Laumar Alan Dave R., 2022. "Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree," Applied Energy, Elsevier, vol. 324(C).
- Oh, Kwang Cheol & Kim, Junghwan & Park, Sun Yong & Kim, Seok Jun & Cho, La Hoon & Lee, Chung Geon & Roh, Jiwon & Kim, Dae Hyun, 2021. "Development and validation of torrefaction optimization model applied element content prediction of biomass," Energy, Elsevier, vol. 214(C).
- Soponpongpipat, N. & Sae-Ueng, U., 2015. "The effect of biomass bulk arrangements on the decomposition pathways in the torrefaction process," Renewable Energy, Elsevier, vol. 81(C), pages 679-684.
- Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
- Rafail Isemin & Alexander Mikhalev & Oleg Milovanov & Dmitry Klimov & Vadim Kokh-Tatarenko & Mathieu Brulé & Fouzi Tabet & Artemy Nebyvaev & Sergey Kuzmin & Valentin Konyakhin, 2022. "Comparison of Characteristics of Poultry Litter Pellets Obtained by the Processes of Dry and Wet Torrefaction," Energies, MDPI, vol. 15(6), pages 1-13, March.
- Dimitrios K. Sidiras & Antonios G. Nazos & Georgios E. Giakoumakis & Dorothea V. Politi, 2020. "Simulating the Effect of Torrefaction on the Heating Value of Barley Straw," Energies, MDPI, vol. 13(3), pages 1-15, February.
- Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
- Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
- Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
- Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
- Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
- José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
- Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.
- Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
- Sunyong Park & Hui-Rim Jeong & Yun-A Shin & Seok-Jun Kim & Young-Min Ju & Kwang-Cheol Oh & La-Hoon Cho & DaeHyun Kim, 2021. "Performance Optimisation of Fuel Pellets Comprising Pepper Stem and Coffee Grounds through Mixing Ratios and Torrefaction," Energies, MDPI, vol. 14(15), pages 1-16, August.
- Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
- González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
- Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
- Baharam Roy & Peter Kleine-Möllhoff & Antoine Dalibard, 2022. "Superheated Steam Torrefaction of Biomass Residues with Valorisation of Platform Chemicals Part—2: Economic Assessment and Commercialisation Opportunities," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
- Timo Steinbrecher & Fabian Bonk & Marvin Scherzinger & Oliver Lüdtke & Martin Kaltschmitt, 2022. "Fractionation of Lignocellulosic Fibrous Straw Digestate by Combined Hydrothermal and Enzymatic Treatment," Energies, MDPI, vol. 15(17), pages 1-27, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maja Ivanovski & Aleksandra Petrovič & Darko Goričanec & Danijela Urbancl & Marjana Simonič, 2023. "Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material," Energies, MDPI, vol. 16(18), pages 1-20, September.
- Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
- Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
- Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
- Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
- Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
- Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
- Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).
- Zhang, Congyu & Chen, Wei-Hsin & Zhang, Ying & Ho, Shih-Hsin, 2023. "Influence of microorganisms on the variation of raw and oxidatively torrefied microalgal biomass properties," Energy, Elsevier, vol. 276(C).
- Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
- Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
- Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
- Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
- Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
- Jagadale, Manisha & Gangil, Sandip & Jadhav, Mahesh, 2023. "Enhancing fuel characteristics of jute sticks (Corchorus Sp.) using fixed bed torrefaction process," Renewable Energy, Elsevier, vol. 215(C).
- Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
- Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
More about this item
Keywords
biomass; lignocellulose; optimization; simulation; torrefaction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9083-:d:989206. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.