IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3788-d1135620.html
   My bibliography  Save this article

Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties

Author

Listed:
  • Jadwiga Wyszkowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

  • Agata Borowik

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

  • Magdalena Zaborowska

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

  • Jan Kucharski

    (Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland)

Abstract

One of the major challenges faced by contemporary agriculture is how to achieve better yields of crops and, consequently, higher biomass, even in unfavorable environmental conditions. This challenge corresponds to the assumptions of sustainable development, wherein it is envisaged that plant biomass should be used on a large scale for heat generation or conversion of biofuels. Keeping pace with observed trends, the following study was conducted in order to determine the effect of Cr(VI) on the net calorific value of Zea mays , to assess the impact of this element on soil enzymatic activity, and to identify the effectiveness of compost and humic acids in alleviating possible negative effects of Cr(VI) toxicity. These aims were pursued by setting up a pot experiment, in which soil either uncontaminated or contaminated with increasing doses of Cr(VI) of 0, 15, 30, 45, and 60 mg Cr kg −1 d.m. was submitted to biostimulation with compost and the preparation HumiAgra, a source of humic acids, and cropped with Zea mays . The plant height, yield, and net calorific value of the aerial parts of maize, as well as its root yield, were determined. Additionally, the activity of seven soil enzymes and the values of the impact indices of compost and HumiAgra relative to the analyzed parameters were determined. It was found that Cr(VI) decreased the amount of energy obtained from the plants by decreasing maize biomass, and additionally by distorting the biochemical balance of the soil. Dehydrogenases, urease, and arylsulfatase proved to be particularly sensitive to this element. It was demonstrated that HumiAgra was more effective than compost in mollifying the adverse effects of Cr(VI) on the activity of soil enzymes and, consequently, on the biomass of Zea mays .

Suggested Citation

  • Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3788-:d:1135620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edyta Boros-Lajszner & Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2021. "Energetic Value of Elymus elongatus L. and Zea mays L. Grown on Soil Polluted with Ni 2+ , Co 2+ , Cd 2+ , and Sensitivity of Rhizospheric Bacteria to Heavy Metals," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    3. Algirdas Jasinskas & Vytautas Kleiza & Dionizas Streikus & Rolandas Domeika & Edvardas Vaiciukevičius & Gvidas Gramauskas & Marvin T. Valentin, 2022. "Assessment of Quality Indicators of Pressed Biofuel Produced from Coarse Herbaceous Plants and Determination of the Influence of Moisture on the Properties of Pellets," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    4. Esperanza Monedero & Juan José Hernández & Rocío Collado, 2017. "Combustion-Related Properties of Poplar, Willow and Black Locust to be used as Fuels in Power Plants," Energies, MDPI, vol. 10(7), pages 1-11, July.
    5. Maciej Serowaniec, 2021. "Sustainable Development Policy and Renewable Energy in Poland," Energies, MDPI, vol. 14(8), pages 1-8, April.
    6. Michał Krzyżaniak & Mariusz J. Stolarski & Łukasz Graban & Waldemar Lajszner & Tomasz Kuriata, 2020. "Camelina and Crambe Oil Crops for Bioeconomy—Straw Utilisation for Energy," Energies, MDPI, vol. 13(6), pages 1-8, March.
    7. Christian Huggel & Laurens M. Bouwer & Sirkku Juhola & Reinhard Mechler & Veruska Muccione & Ben Orlove & Ivo Wallimann-Helmer, 2022. "The existential risk space of climate change," Climatic Change, Springer, vol. 174(1), pages 1-20, September.
    8. Jarosław Gocławski & Ewa Korzeniewska & Joanna Sekulska-Nalewajko & Paweł Kiełbasa & Tomasz Dróżdż, 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value," Energies, MDPI, vol. 15(7), pages 1-23, March.
    9. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    10. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    11. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    12. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Biochar, Halloysite, and Alginite Improve the Quality of Soil Contaminated with Petroleum Products," Agriculture, MDPI, vol. 13(9), pages 1-21, August.
    2. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Energy Quality of Corn Biomass from Gasoline-Contaminated Soils Remediated with Sorbents," Energies, MDPI, vol. 17(21), pages 1-18, October.
    3. Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
    4. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jarosław Gocławski & Ewa Korzeniewska & Joanna Sekulska-Nalewajko & Paweł Kiełbasa & Tomasz Dróżdż, 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value," Energies, MDPI, vol. 15(7), pages 1-23, March.
    2. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    3. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2022. "Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil," Energies, MDPI, vol. 15(9), pages 1-23, May.
    4. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
    5. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    6. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    7. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    8. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    9. Kamil Witaszek & Marcin Herkowiak & Agnieszka A. Pilarska & Wojciech Czekała, 2022. "Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production," Energies, MDPI, vol. 15(5), pages 1-20, March.
    10. Mónica Duque-Acevedo & Luis Jesús Belmonte-Ureña & Natalia Yakovleva & Francisco Camacho-Ferre, 2020. "Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management," IJERPH, MDPI, vol. 17(24), pages 1-32, December.
    11. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    12. Hossain, Tasmin & Jones, Daniela S. & Godfrey, Edward & Saloni, Daniel & Sharara, Mahmoud & Hartley, Damon S., 2024. "Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass," Renewable Energy, Elsevier, vol. 227(C).
    13. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    14. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    15. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    16. Tao Li & Guangwei Wang & Heng Zhou & Xiaojun Ning & Cuiliu Zhang, 2022. "Numerical Simulation Study on the Effects of Co-Injection of Pulverized Coal and Hydrochar into the Blast Furnace," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    17. Salkuyeh, Yaser Khojasteh & Elkamel, Ali & Thé, Jesse & Fowler, Michael, 2016. "Development and techno-economic analysis of an integrated petroleum coke, biomass, and natural gas polygeneration process," Energy, Elsevier, vol. 113(C), pages 861-874.
    18. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    19. Wang, Qi & Wang, Enlu & Chionoso, Oguga Paul, 2022. "Numerical simulation of the synergistic effect of combustion for the hydrochar /coal blends in a blast furnace," Energy, Elsevier, vol. 238(PB).
    20. Farahani, Moein Farmahini & Akbari, Shahin & Sadeghi, Sadegh & Bidabadi, Mehdi & Moghadam, Mohammadamir Ghasemian & Xu, Fei, 2020. "Analytical study of transient counter-flow non-premixed combustion of biomass in presence of thermal radiation," Renewable Energy, Elsevier, vol. 159(C), pages 312-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3788-:d:1135620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.