IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v185y2022icp386-402.html
   My bibliography  Save this article

Inspecting the bioenergy potential of noxious Vachellia nilotica weed via pyrolysis: Thermo-kinetic study, neural network modeling and response surface optimization

Author

Listed:
  • Sahoo, Abhisek
  • Saini, Komal
  • Negi, Shweta
  • Kumar, Jitendra
  • Pant, Kamal K.
  • Bhaskar, Thallada

Abstract

In the present study, Vachellia nilotica (VN) was valorized via thermal pyrolysis. A thermogravimetric analyzer studied the thermal degradation of VN under non-isothermal conditions. Kinetic parameters were determined using seven isoconversional methods. The Eavg was ranged from 142.15 to 166.21 kJ/mol, with the advanced isoconversional approach showing significantly better performance than general methods. Thermodynamic analysis of VN pyrolysis suggested the possibility of conversion. Neural network modeling was significantly employed to predict the value of dα/dt. The effect of temperature (350–550 °C), heating rate (10–50 °C/min), and particle size (0.1–1 mm) on process performance in terms of products yield were systematically studied and analyzed. The process variables of temperature, heating rate, and particle size were also optimized using response surface methodology (RSM). The ideal operating parameters of temperature at 500 °C, and a heating rate of 25 °C/min with 0.4 mm particle size were determined and experimentally confirmed. The characteristics of the resulting product were determined using ultimate analysis, FTIR, and GC-MS, and it was discovered that the principal constituents in the VN pyrolysis process include phenolics, furfural, and dehydroacetic acid. VN has a high thermochemical conversion potential for bioenergy, as evidenced by their physicochemical properties and thermo-kinetic findings.

Suggested Citation

  • Sahoo, Abhisek & Saini, Komal & Negi, Shweta & Kumar, Jitendra & Pant, Kamal K. & Bhaskar, Thallada, 2022. "Inspecting the bioenergy potential of noxious Vachellia nilotica weed via pyrolysis: Thermo-kinetic study, neural network modeling and response surface optimization," Renewable Energy, Elsevier, vol. 185(C), pages 386-402.
  • Handle: RePEc:eee:renene:v:185:y:2022:i:c:p:386-402
    DOI: 10.1016/j.renene.2021.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121017262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    2. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    3. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    4. Ortiz, Leandro Rodriguez & Torres, Erick & Zalazar, Daniela & Zhang, Huili & Rodriguez, Rosa & Mazza, Germán, 2020. "Influence of pyrolysis temperature and bio-waste composition on biochar characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 837-847.
    5. Garg, Rahul & Anand, Neeru & Kumar, Dinesh, 2016. "Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization," Renewable Energy, Elsevier, vol. 96(PA), pages 167-171.
    6. Singh, Yengkhom Disco & Mahanta, Pinakeswar & Bora, Utpal, 2017. "Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production," Renewable Energy, Elsevier, vol. 103(C), pages 490-500.
    7. Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology," Energy, Elsevier, vol. 170(C), pages 423-437.
    8. Bong, Jang Tyng & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & Lam, Man Kee & Tang, Daniel Kuok Ho & Lim, Huei Yeong & Chai, Yee Ho & Yusup, Suzana, 2020. "Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst," Energy, Elsevier, vol. 207(C).
    9. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rawat, Shweta & Wagadre, Lokesh & Kumar, Sanjay, 2024. "Multi-objective genetic algorithm approach for enhanced cumulative hydrogen and methane-rich syngas emission through co-pyrolysis of de-oiled microalgae and coal blending," Renewable Energy, Elsevier, vol. 225(C).
    2. Nawaz, Ahmad & Kumar, Pradeep, 2022. "Pyrolysis behavior of low value biomass (Sesbania bispinosa) to elucidate its bioenergy potential: Kinetic, thermodynamic and prediction modelling using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 257-270.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zalazar-Garcia, Daniela & Fernandez, Anabel & Rodriguez-Ortiz, Leandro & Torres, Erick & Reyes-Urrutia, Andrés & Echegaray, Marcelo & Rodriguez, Rosa & Mazza, Germán, 2022. "Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software," Renewable Energy, Elsevier, vol. 201(P1), pages 60-71.
    2. Ahmed, Gaffer & Kishore, Nanda, 2023. "Fuel phase extraction from pyrolytic liquid of Azadirachta indica biomass followed by subsequent characterization of pyrolysis products," Renewable Energy, Elsevier, vol. 219(P1).
    3. Torres, Erick & Rodriguez-Ortiz, Leandro A. & Zalazar, Daniela & Echegaray, Marcelo & Rodriguez, Rosa & Zhang, Huili & Mazza, Germán, 2020. "4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste," Renewable Energy, Elsevier, vol. 162(C), pages 296-307.
    4. Ahmed, Ashfaq & Abu Bakar, Muhammad S. & Azad, Abul K. & Sukri, Rahayu S. & Mahlia, Teuku Meurah Indra, 2018. "Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3060-3076.
    5. Ashfaq Ahmed & Muhammad S. Abu Bakar & Abdul Razzaq & Syarif Hidayat & Farrukh Jamil & Muhammad Nadeem Amin & Rahayu S. Sukri & Noor S. Shah & Young-Kwon Park, 2021. "Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion," Sustainability, MDPI, vol. 13(9), pages 1-13, May.
    6. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    7. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
    8. Marisutti, Estela & Viegas, Bruno Marques & Rodrigues, Naira Poerner & Ayub, Marco Antônio Záchia & Rossi, Daniele Misturini, 2024. "Characterization and treatments in soybean hull for 2,3-Butanediol production using Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1," Renewable Energy, Elsevier, vol. 224(C).
    9. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    10. Zhi Xu & Zhaohui Guo & Huimin Xie & Yulian Hu, 2022. "Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    11. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    12. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    13. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
    14. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    15. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    16. Sahu, Parmanand & Gangil, Sandip & Bhargav, Vinod Kumar, 2023. "Biopolymeric transitions under pyrolytic thermal degradation of Pigeon pea stalk," Renewable Energy, Elsevier, vol. 206(C), pages 157-167.
    17. Mingying Dong & Lizhi He & Mengyuan Jiang & Yi Zhu & Jie Wang & Williamson Gustave & Shuo Wang & Yun Deng & Xiaokai Zhang & Zhenyu Wang, 2023. "Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
    18. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    19. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    20. Bong, Jang Tyng & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & Lam, Man Kee & Tang, Daniel Kuok Ho & Lim, Huei Yeong & Chai, Yee Ho & Yusup, Suzana, 2020. "Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:185:y:2022:i:c:p:386-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.