IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp632-643.html
   My bibliography  Save this article

Potential use of Sotol bagasse (Dasylirion spp.) as a new biomass source for liquid biofuels production: Comprehensive characterization and ABE fermentation

Author

Listed:
  • Piñón-Muñiz, M.I.
  • Ramos-Sánchez, V.H.
  • Gutiérrez-Méndez, N.
  • Pérez-Vega, S.B.
  • Sacramento-Rivero, J.C.
  • Vargas-Consuelos, C.I.
  • Martinez, F.M.
  • Graeve, O.A.
  • Orozco-Mena, R.E.
  • Quintero-Ramos, A.
  • Sánchez-Madrigal, M.A.
  • Salmerón, I.

Abstract

This study presents a physico-chemical characterization of bagasse obtained from the artisanal and industrial production of Sotol. The last was employed as feedstock for acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii. Chemical analyses revealed a significant presence of CaC₂O₄, and levels of inorganic elements close to or above the limits established in ISO 16968:2015. These, together with their calorific values that are below other lignocellulosic materials, limit the use of sotol bagasse as solid biofuel. Structural characterization exhibited that the industrial sotol bagasse contained cellulose with lower crystallinity, thus easing its bioavailability for microorganisms to perform ABE fermentation. It was possible to obtain acetone, butanol, and ethanol (0.94 ± 0.05 g/L, 1.97 ± 0.52 g/L and 1.90 ± 0.40 g/L, respectively) using industrial sotol bagasse as substrate for C. beijerinckii. Then a scale-up of ABE fermentation was carried out to obtain information on ABE yield and Clostridium growth kinetics at different working volumes. ABE yield was lower the scale-up experiment (0.31 ± 0.02 g/g) compared to the obtained with smaller working volume (0.48 ± 0.07 g/g). These results offer crucial insights into the potential use of industrial sotol bagasse as a novel renewable feedstock to obtain biofuels throughout ABE fermentation.

Suggested Citation

  • Piñón-Muñiz, M.I. & Ramos-Sánchez, V.H. & Gutiérrez-Méndez, N. & Pérez-Vega, S.B. & Sacramento-Rivero, J.C. & Vargas-Consuelos, C.I. & Martinez, F.M. & Graeve, O.A. & Orozco-Mena, R.E. & Quintero-Ramo, 2023. "Potential use of Sotol bagasse (Dasylirion spp.) as a new biomass source for liquid biofuels production: Comprehensive characterization and ABE fermentation," Renewable Energy, Elsevier, vol. 212(C), pages 632-643.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:632-643
    DOI: 10.1016/j.renene.2023.05.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300678X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    2. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    3. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    4. Bilgen, Selçuk & Kaygusuz, Kamil, 2008. "The calculation of the chemical exergies of coal-based fuels by using the higher heating values," Applied Energy, Elsevier, vol. 85(8), pages 776-785, August.
    5. Singh, Yengkhom Disco & Mahanta, Pinakeswar & Bora, Utpal, 2017. "Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production," Renewable Energy, Elsevier, vol. 103(C), pages 490-500.
    6. Patthranit Narueworanon & Lakkana Laopaiboon & Niphaphat Phukoetphim & Pattana Laopaiboon, 2020. "Impacts of Initial Sugar, Nitrogen and Calcium Carbonate on Butanol Fermentation from Sugarcane Molasses by Clostridium beijerinckii," Energies, MDPI, vol. 13(3), pages 1-19, February.
    7. Hijosa-Valsero, María & Garita-Cambronero, Jerson & Paniagua-García, Ana I. & Díez-Antolínez, Rebeca, 2020. "A global approach to obtain biobutanol from corn stover," Renewable Energy, Elsevier, vol. 148(C), pages 223-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garita-Cambronero, Jerson & Paniagua-García, Ana I. & Hijosa-Valsero, María & Díez-Antolínez, Rebeca, 2021. "Biobutanol production from pruned vine shoots," Renewable Energy, Elsevier, vol. 177(C), pages 124-133.
    2. Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
    3. Olatunji, Obafemi O. & Akinlabi, Stephen & Madushele, Nkosinathi & Adedeji, Paul A., 2020. "Property-based biomass feedstock grading using k-Nearest Neighbour technique," Energy, Elsevier, vol. 190(C).
    4. Gianluca Cavalaglio & Franco Cotana & Andrea Nicolini & Valentina Coccia & Alessandro Petrozzi & Alessandro Formica & Alessandro Bertini, 2020. "Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    5. Ignacio, Luís Henrique da Silva & Santos, Pedro Eduardo de Almeida & Duarte, Carlos Antonio Ribeiro, 2019. "An experimental assessment of Eucalyptus urosemente energy potential for biomass production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 361-369.
    6. Vinícius P. Shibukawa & Lucas Ramos & Mónica M. Cruz-Santos & Carina A. Prado & Fanny M. Jofre & Gabriel L. de Arruda & Silvio S. da Silva & Solange I. Mussatto & Júlio C. dos Santos, 2023. "Impact of Product Diversification on the Economic Sustainability of Second-Generation Ethanol Biorefineries: A Critical Review," Energies, MDPI, vol. 16(17), pages 1-30, September.
    7. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    8. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    9. Marisutti, Estela & Viegas, Bruno Marques & Rodrigues, Naira Poerner & Ayub, Marco Antônio Záchia & Rossi, Daniele Misturini, 2024. "Characterization and treatments in soybean hull for 2,3-Butanediol production using Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1," Renewable Energy, Elsevier, vol. 224(C).
    10. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    11. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    12. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Yoonah Jeong & Jae-Sung Kim & Ye-Eun Lee & Dong-Chul Shin & Kwang-Ho Ahn & Jinhong Jung & Kyeong-Ho Kim & Min-Jong Ku & Seung-Mo Kim & Chung-Hwan Jeon & I-Tae Kim, 2023. "Investigation and Optimization of Co-Combustion Efficiency of Food Waste Biochar and Coal," Sustainability, MDPI, vol. 15(19), pages 1-12, October.
    14. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    15. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    16. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    18. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    19. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    20. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:632-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.