Predicting component reliability and level of degradation with complex-valued neural networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2013.08.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zia-ur-Rehman Gondal & Jongsoo Lee, 2012. "Reliability assessment using feed-forward neural network-based approximate meta-models," Journal of Risk and Reliability, , vol. 226(5), pages 448-454, October.
- Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
- Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
- Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
- Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
- Kurd, Zeshan & Kelly, Tim P., 2007. "Using fuzzy self-organising maps for safety critical systems," Reliability Engineering and System Safety, Elsevier, vol. 92(11), pages 1563-1583.
- Hu, Q.P. & Xie, M. & Ng, S.H. & Levitin, G., 2007. "Robust recurrent neural network modeling for software fault detection and correction prediction," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 332-340.
- Abbasi, B. & Hosseinifard, S.Z. & Coit, D.W., 2010. "A neural network applied to estimate Burr XII distribution parameters," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 647-654.
- Yu Liu & Hong-Zhong Huang & Dan Ling, 2013. "Reliability prediction for evolutionary product in the conceptual design phase using neural network-based fuzzy synthetic assessment," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(3), pages 545-555.
- Sadovský, Z. & Guedes Soares, C., 2011. "Artificial neural network model of the strength of thin rectangular plates with weld induced initial imperfections," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 713-717.
- Chen, Kuan-Yu, 2007. "Forecasting systems reliability based on support vector regression with genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 423-432.
- Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
- Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
- Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
- Rocco S., Claudio M. & Zio, Enrico, 2007. "A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 593-600.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
- Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Zhang, Limao & Wu, Xianguo & Skibniewski, Miroslaw J. & Zhong, Jingbing & Lu, Yujie, 2014. "Bayesian-network-based safety risk analysis in construction projects," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 29-39.
- Gómez, M.J. & Castejón, C. & GarcÃa-Prada, J.C., 2016. "Automatic condition monitoring system for crack detection in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 239-247.
- Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
- Santhosh, T.V. & Gopika, V. & Ghosh, A.K. & Fernandes, B.G., 2018. "An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 31-44.
- Andrés Ruiz-Tagle Palazuelos & Enrique López Droguett & Rodrigo Pascual, 2020. "A novel deep capsule neural network for remaining useful life estimation," Journal of Risk and Reliability, , vol. 234(1), pages 151-167, February.
- Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.
- Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
- Lei Xiao & Xiaohui Chen & Xinghui Zhang & Min Liu, 2017. "A novel approach for bearing remaining useful life estimation under neither failure nor suspension histories condition," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1893-1914, December.
- Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
- Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Zhou, Ying & Li, Chenshuang & Ding, Lieyun & Sekula, Przemyslaw & Love, Peter E.D. & Zhou, Cheng, 2019. "Combining association rules mining with complex networks to monitor coupled risks," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 194-208.
- Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Salvatore Antonio Biancardo & Francesco Abbondati & Francesca Russo & Rosa Veropalumbo & Gianluca Dell’Acqua, 2020. "A Broad-Based Decision-Making Procedure for Runway Friction Decay Analysis in Maintenance Operations," Sustainability, MDPI, vol. 12(9), pages 1-21, April.
- Downey, Austin & Lui, Yu-Hui & Hu, Chao & Laflamme, Simon & Hu, Shan, 2019. "Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 1-12.
- Malinowski, Simon & Chebel-Morello, Brigitte & Zerhouni, Noureddine, 2015. "Remaining useful life estimation based on discriminating shapelet extraction," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 279-288.
- Yi Yang & Sixin Wang & Wei Xu & Kunlun Wei, 2018. "Reliability evaluation of wireless multimedia sensor networks based on instantaneous availability," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
- Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
- Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
- Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
- Downey, Austin & Lui, Yu-Hui & Hu, Chao & Laflamme, Simon & Hu, Shan, 2019. "Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 1-12.
- Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
- Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
- Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
- Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
- Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
- Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
- Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
- Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
- Yang, Bo & Li, Xiang & Xie, Min & Tan, Feng, 2010. "A generic data-driven software reliability model with model mining technique," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 671-678.
- Zhang, Liangwei & Lin, Jing & Karim, Ramin, 2015. "An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 482-497.
- Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
- Guikema, Seth D., 2009. "Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 855-860.
- Shen, Xingkeng & Feng, Kaixuan & Xu, Heming & Wang, Guangqiang & Zhang, Yishang & Dai, Ying & Yun, Wanying, 2023. "Reliability analysis of bending fatigue life of hydraulic pipeline," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
More about this item
Keywords
Neural networks; Complex valued neural networks; Reliability prediction; Level of degradation; Railway turnout system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:121:y:2014:i:c:p:198-206. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.