IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v114y2013icp126-136.html
   My bibliography  Save this article

Singular spectrum analysis and forecasting of failure time series

Author

Listed:
  • Rocco S, Claudio M.

Abstract

Singular spectrum analysis (SSA) is a relatively recent approach used to model time series with no assumptions of the underlying process. SSA is able to make a decomposition of the original time series into the sum of independent components, which represent the trend, oscillatory behavior (periodic or quasi-periodic components) and noise. In this paper SSA is used to decompose and forecast failure behaviors using time series related to time-to-failure data. Results are compared with previous approaches and show that SSA is a promising approach for data analysis and for forecasting failure time series.

Suggested Citation

  • Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
  • Handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:126-136
    DOI: 10.1016/j.ress.2013.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    2. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
    3. de Carvalho, Miguel & Rodrigues, Paulo C. & Rua, António, 2012. "Tracking the US business cycle with a singular spectrum analysis," Economics Letters, Elsevier, vol. 114(1), pages 32-35.
    4. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    5. Hu, Q.P. & Xie, M. & Ng, S.H. & Levitin, G., 2007. "Robust recurrent neural network modeling for software fault detection and correction prediction," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 332-340.
    6. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    7. Chen, Kuan-Yu, 2007. "Forecasting systems reliability based on support vector regression with genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 423-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feiyu Zhang & Yuqi Dong & Kequan Zhang, 2016. "A Novel Combined Model Based on an Artificial Intelligence Algorithm—A Case Study on Wind Speed Forecasting in Penglai, China," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    2. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    3. Mahdi Kalantari & Hossein Hassani, 2019. "Automatic Grouping in Singular Spectrum Analysis," Forecasting, MDPI, vol. 1(1), pages 1-16, October.
    4. Aman Kalteh, 2016. "Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 747-766, January.
    5. Aman Mohammad Kalteh, 2016. "Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 747-766, January.
    6. Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Fink, Olga & Zio, Enrico & Weidmann, Ulrich, 2014. "Predicting component reliability and level of degradation with complex-valued neural networks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 198-206.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:rdg:wpaper:em-dp2013-04 is not listed on IDEAS
    2. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    3. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    4. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    5. Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
    6. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    7. Dimitrios Thomakos & Hossein Hassani & Kerry Patterson, 2013. "Optimal Linear Filtering, Smoothing and Trend Extraction for the m-th Differences of a Unit Root Process: A Singular Spectrum Analysis Approach," Economics Discussion Papers em-dp2013-04, Department of Economics, University of Reading.
    8. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
    9. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
    10. Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
    11. Fink, Olga & Zio, Enrico & Weidmann, Ulrich, 2014. "Predicting component reliability and level of degradation with complex-valued neural networks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 198-206.
    12. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    13. M. Atikur Rahman Khan & D.S. Poskitt, 2014. "On The Theory and Practice of Singular Spectrum Analysis Forecasting," Monash Econometrics and Business Statistics Working Papers 3/14, Monash University, Department of Econometrics and Business Statistics.
    14. Khatibinia, Mohsen & Javad Fadaee, Mohammad & Salajegheh, Javad & Salajegheh, Eysa, 2013. "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 22-33.
    15. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    16. Wu, Xuedong & Chang, Yanchao & Mao, Jianxu & Du, Zhaoping, 2013. "Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 244-250.
    17. Huang, Xu & Hassani, Hossein & Ghodsi, Mansi & Mukherjee, Zinnia & Gupta, Rangan, 2017. "Do trend extraction approaches affect causality detection in climate change studies?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 604-624.
    18. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    19. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    20. Hassani, Hossein & Huang, Xu & Gupta, Rangan & Ghodsi, Mansi, 2016. "Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 54-65.
    21. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:126-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.